关于气象观测介绍

关于气象观测介绍,第1张

关于气象观测介绍

[拼音]:qixiang guance

[外文]:meteorological observation

研究测量和观察地球大气的物理和化学特性以及大气现象的方法和手段的一门学科。测量和观察的内容主要有大气气体成分浓度、气溶胶、温度、湿度、压力、风、大气湍流、蒸发、云、降水、辐射、大气能见度、大气电场、大气电导率以及雷电、虹、晕等。从学科上分,气象观测属于大气科学的一个分支。它包括地面气象观测、高空气象观测、大气遥感探测和气象卫星探测等,有时统称为大气探测。由各种手段组成的气象观测系统(见彩图),能观测从地面到高层,从局地到全球的大气状态及其变化。

简史

大气中发生的各种现象,自古以来就为人们所注意,在中外古籍中都有较丰富的记载(见大气科学发展简史)。但在16世纪以前主要是凭目力观测,除雨量测定(至迟在15世纪之前已经出现)外,其他特性的定量观测,则是17世纪以后的事。用仪器进行气象观测,经历着三个重要的发展阶段。16世纪末到20世纪初,是地面气象观测的形成阶段。1597年(有说1593年)意大利物理学家和天文学家伽利略发明空气温度表,1643年E.托里拆利发明气压表。这些仪器以及其他观测仪器的陆续发明,使气象观测由定性描述向定量观测发展,在这阶段发明的气压表、温度表、湿度表、风向风速计、雨量器、蒸发皿、日射表等气象仪器(见地面气象观测仪器),为逐步组建比较完善的地面气象观测站网和对近地面层气象要素进行日常的系统观测提供了物质基础。并为绘制天气图和气候图,开创近代天气分析和天气预报等的研究和业务提供了定量的科学依据。20世纪20年代末至60年代初,是由地面观测发展到高空观测的阶段。随着无线电技术的发展,出现了无线电探空仪,得以测量各高度大气的温度、湿度、压力、风等气象要素,使气象观测突破了二百多年来只能对近地面层大气进行系统测量的局限。到40年代中期,气象火箭把探测高度进一步抬升到100公里左右,同时气象雷达也开始应用于大气探测(一部气象雷达能够对几百公里范围内的雷暴分布和结构连续地进行探测)。这些高空探测技术的发展,使人们对大气三维空间的结构有了真正的了解。60年代初以来,气象观测进入了第三个阶段,即大气遥感探测阶段。它以1960年4月1日美国发射第一颗气象卫星(泰罗斯 1号)为主要标志。大气遥感不仅扩大了探测的空间范围,增强了探测的连续性,而且更增加了观测内容。一颗地球同步气象卫星可以提供几乎 1/5地球范围内每隔10分钟左右的连续气象资料。

观测系统

一个较完整的现代气象观测系统由观测平台、观测仪器和资料处理等部分组成。

观测平台

根据特定要求安装仪器并进行观测工作的基点。地面气象站的观测场、气象塔、船舶、海上浮标和汽车等都属地面气象观测平台;气球、飞机、火箭、卫星和空间实验室等,是普遍采用的高空气象观测平台。它们分别装载各种地面的和高空的气象观测仪器。

观测仪器

经过三百多年的发展,应用于研究和业务的气象观测仪器,已有数十种之多,主要包括直接测量和遥感探测两类:前者通过各种类型的感应元件,将直接感应到的大气物理特性和化学特性,转换成机械的、电磁的或其他物理量进行测量,例如气压表、温度表、湿度表等;后者是接收来自不同距离上的大气信号或反射信号,从中反演出大气物理特性和化学特性的空间分布,例如气象雷达、声雷达(见声波大气遥感)、激光气象雷达(见激光大气遥感)、红外辐射计(见红外大气遥感)等。这些仪器广泛应用了力学、热学、电磁学、光学以及机械、电子、半导体、激光、红外和微波等科学技术领域的成果。此外,还有大气化学的痕量分析等手段。气象观测仪器必须满足以下要求:

(1)能够适应各种复杂和恶劣的天气条件,保持性能长期稳定。

(2)能够适应在不同天气气候条件下气象要素变化范围大的特点,具有很高的灵敏度、精确度和比较大的量程。此外,根据观测平台的工作条件,对观测仪器的体积、重量、结构和电源等方面,还有各种特殊要求。

资料处理

现代气象观测系统所获取的气象信息是大量的,要求高速度地分析处理,例如,一颗极轨气象卫星,每12小时内就能给出覆盖全球的资料,其水平空间分辨率达 1公里左右。采用电子计算机等现代自动化技术分析处理资料,是现代气象观测中必不可少的环节。许多现代气象观测系统,都配备了小型或微型处理机,及时分析处理观测资料和实时给出结果(见气象资料处理)。

观测网

气象观测网是组合各种气象观测和探测系统而建立起来的。基本上分为两大类:

(1)常规观测网。长期稳定地进行观测,主要为日常天气预报、灾害性天气监测、气候监测等提供资料的观测系统。例如由世界各国的地面气象站(包括常规地面气象站、自动气象站和导航测风站)、海上漂浮(固定浮标、飘移浮标)站、船舶站和研究船、无线电探空站、航线飞机观测、火箭探空站、气象卫星及其接收站等组成的世界天气监视网(WWW),就是一个规模最大的近代全球气象观测网。这个观测网所获得的资料,通过全球通信网络,可及时提供各国气象业务单位使用(见气象情报传输)。此外,还有国际臭氧监测网、气候监测站等。

(2)专题观测网。根据特定的研究课题,只在一定时期内开展观测工作的观测系统。例如20世纪70年代实施的全球大气研究计划第一次全球试验(FGGE)、日本的暴雨试验和美国的强风暴试验的观测网,就是为研究中长期大气过程和中小尺度天气系统等的发生发展规律而临时建立的。

组织气象观测网要耗费大量的人力和物力。如何根据实际需要,正确地选择观测项目,恰当地提出对观测仪器的技术要求,合理地确定仪器观测取样的频数和观测系统的空间布局,以取得最佳的观测效果,是一项重要的课题。

作用

气象观测是气象工作和大气科学发展的基础。由于大气现象及其物理过程的变化较快,影响因子复杂,除了大气本身各种尺度运动之间的相互作用外,太阳、海洋和地表状况等,都影响着大气的运动。虽然在一定简化条件下,对大气运动作了不少模拟研究(见大气运动数值试验)、大气运动模型实验,但组织局地或全球的气象观测网,获取完整准确的观测资料,仍是大气科学理论研究的主要途径。历史上的锋面、气旋、气团和大气长波等重大理论的建立,都是在气象观测提供新资料的基础上实现的。所以,不断引进其他科学领域的新技术成果,革新气象观测系统,是发展大气科学的重要措施。

气象观测记录和依据它编发的气象情报,除了为天气预报提供日常资料外,还通过长期积累和统计,加工成气候资料,为农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门进行规划、设计和研究,提供重要的数据。采用大气遥感探测和高速通信传输技术组成的灾害性天气监测网,已经能够十分及时地直接向用户发布龙卷、强风暴和台风等灾害性天气警报。大气探测技术的发展为减轻或避免自然灾害造成的损失提供了条件。

参考文章

  • 为什么说我国古代气象观测的水平很高中国史

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4703676.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-07
下一篇 2022-11-07

发表评论

登录后才能评论

评论列表(0条)

保存