抛物线焦点弦公式

抛物线焦点弦公式,第1张

抛物线焦点弦公式

几何领域的抛物线焦点弦弦长公式

定义:如果一条倾斜角为α的直线过抛物线焦点F,并交抛物线于A。B两点,则AB的长度为2P/(sinα)2(即2P除以sinα的平方)

推导过程::设两交点A(X1,Y1)B(X2,Y2)

(y2-y1)/(x2-x1)=tanα

|AB|=√[(y2-y1)^2+(x2-x1)^2]=√[(tanα^2+1)(x2-x1)^2]

设直线l为y=tanαx+b且过点(p/2,0)

即直线为y=tanαx-ptanα/2

联立得到tanα^2x^2-(tanα^2+2)px+p^2tanα^2/4=0

那么(x2-x1)^2

=(x2+x1)^2-4x1x2

=((tanα^2+2)p/tanα^2)^2-4*(p^2tanα^2/4)/tanα^2

=4p^2(tanα^2+1)/tanα^4

那么|AB|=√[(tanα^2+1)(x2-x1)^2]=2p(tanα^2+1)/tanα^2=2p/(sinα)2

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/5169027.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-18
下一篇 2022-11-18

发表评论

登录后才能评论

评论列表(0条)

保存