求值域共有9种方法:
1、观察法
用于简单的解析式.y=1-√x≤1,值域(-∞, 1]y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2、不等式法
用不等式的基本性质,也是求值域的常用方法.y=(e^x+1)/(e^x-1), (0
3、配方法
多用于二次(型)函数.y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,+∞)y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
4.换元法
多用于复合型函数.通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域,注意中间变量(新量)的变化范围。 y=-x+2√( x-1)+2令t=√(x-1),则t≥0,x=t^2+1. y=-t^2+2t+1=-(t-1)^2+2≤2,值域(-∞, 2].
5.最值法
如果函数f(x)存在最大值M和最小值m,那么值域为[m,M].因此,求值域的方法与求最值的方法是相通的。
6.反函数法(有的又叫反解法)
函数和它的反函数的定义域与值域互换.如果一个函数的值域不易求,而它的反函数的定义域易求,那么我们可以通过求后者得出前者。
7.单调性法
若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)];若是减函数,则值域为[f(b), f(a)]. y=x^2-4x+3, (-1≤x≤1).y=(x-2)^2-1在[-1, 1]上是减函数(单调递减),F(-1)=8,f(1)=0,值域[0, 8].
8.斜率法
数形结合.求函数y=(sinx+3)/(cosx-4)的值域.把函数y=(sinx+3)/(cosx-4)看成单位圆上的动点M(cosx,sinx)与定点P(4,-3)连线的斜率,则直线MP的方程为y+3=k(x-4)等价于y=kx-4k-3.圆心(0,0)到直线的距离在相切时最大为1=|-4k-3|/√(1+k^2),解得k=(-12±√6)/15.y max=(-12+√6)/15,y min=(-12-√6)/15值域[(-12-√6)/15,(-12+√6)/15].一般的,对函数y=(sinx+a)/(cosx+b),都可以用斜率法求最值和值域.对函数y=( cosx +a)/(sinx +b),也都可以转化后用斜率法求最值和值域。
9.导数法
导数为零的点称为驻点,设f'(x0)=0,若当x
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)