直角三角形中30度角所对的直角边等于斜边的一半。
证明方法如下:
延长BA到D,使AD=AB,连接CD。
∵∠BAC=90°,AB=AD,
∴AC垂直平分BD,
∴BC=CD(垂直平分线上的点到线段两端距离相等),
∵∠B=90°-∠ACB=90°-30°=60°,
∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形),
∴BD=BC,
∵AB=AD=1/2BD,
∴AB=1/2BC。
欢迎分享,转载请注明来源:内存溢出
直角三角形中30度角所对的直角边等于斜边的一半。
证明方法如下:
延长BA到D,使AD=AB,连接CD。
∵∠BAC=90°,AB=AD,
∴AC垂直平分BD,
∴BC=CD(垂直平分线上的点到线段两端距离相等),
∵∠B=90°-∠ACB=90°-30°=60°,
∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形),
∴BD=BC,
∵AB=AD=1/2BD,
∴AB=1/2BC。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)