合同一定是实对称矩阵吗

合同一定是实对称矩阵吗,第1张

合同一定是实对称矩阵

合同矩阵是对称的。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵C,使得C^TAC=B,则称方阵A合同于矩阵B。一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。

合同关系是一个等价关系,也就是说满足:

1、反身性:任意矩阵都与其自身合同。

2、对称性:A合同于B,则可以推出B合同于A。

3、传递性:A合同于B,B合同于C,则可以推出A合同于C。

4、合同矩阵的秩相同。

矩阵合同的主要判别法:

设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同。

设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/5388175.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-10
下一篇 2022-12-10

发表评论

登录后才能评论

评论列表(0条)

保存