三角形的三条高线的交点叫做三角形的垂心。1.三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。2.三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))3.垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
扩展资料:
设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2
1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;
3、 垂心H关于三边的对称点,均在△ABC的外接圆上。
4、 △ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。
5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为——垂心组)。
6、 △ABC,△ABH,△BCH,△ACH的外接圆是等圆。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)