分离系数法

分离系数法,第1张

分离系数

分离系数法:多项式除以多项式,当除式、被除式都按降幂排列时,各项的位置就可以表示所含字母的次数。因此,计算时,只须写出系数,算出结果后,再把字母和相应的指数补上.这种方法叫做分离系数法。

值域为数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。

化归法

在解决问题的过程中,数学家往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个已经解决的问题,或容易解决的问题。 把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解。

图像法:根据函数图象,观察最高点和最低点的纵坐标。

配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。

反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/5398404.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-10
下一篇 2022-12-10

发表评论

登录后才能评论

评论列表(0条)

保存