克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。
对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n•n!)。即使对于2×2系统,克拉默的规则在数值上也是不稳定的 。
一般来说,用克莱姆法则求线性方程组的解时,计算量是比较大的。使用克莱姆法则求线性方程组的解的算时间复杂度依赖于矩阵行列式的算法复杂度O(f(n)),其复杂度为O(n•f(n)),一般没有计算价值,复杂度太高。对具体的数字线性方程组,当未知数较多时往往可用计算机来求解。用计算机求解线性方程组目前已经有了一整套成熟的方法。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)