当抛物线方程为 y^2=2px(pu003e0) (开口向右) 时,焦半径r=x+p/2 (其中x为在抛物线上的横坐标,p为焦准距), 利用抛物线第二定义求。至于抛物线开口方向为其他三个方向时,利用抛物线第二定义求同理可求。如果焦点不在坐标轴上,只需要将x进行相应平移即可,p不变。
圆锥曲线上任意一点M与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。圆锥曲线上一点到焦点的距离,不是定值。焦半径:曲线上任意一点与焦点的连线段焦点弦,过一个焦点的弦通径。过焦点并垂直于轴的弦圆锥曲线(除圆外)中,过焦点并垂直于轴的弦。
扩展资料
相关结论
A(x1,y1),B(x2,y2),A,B在抛物线y1=2px上,则有:
① 直线AB过焦点时,x1x2 = p²/4 , y1y2 = -p²;
(当A,B在抛物线x²=2py上时,则有x1x2 = -p² , y1y2 = p²/4 , 要在直线过焦点时才能成立)
② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)1]=(x1+x2)/2+P。
③ (1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)