点在平面上的投影怎么求

点在平面上的投影怎么求,第1张

点在平面上的投影怎么求

点在平面上的投影解法为,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。

例:点到平面的投影 已知点A(1,2,-3)求点A在平面2x+3y-5z+1=0上的投影。

解:过点A(1,2,-3)向平面2x+3y-5z+1=0做垂线,交平面于B 因为向量(2,3,-5)为平面的法向量(看平面2x+3y-5z+1=0,xyz前面的系数) 所以过线段AB的直线方程的方向向量为(2,3,-5) 所以根据空间直线的点向式可得(A(1,2,-3)、方向向量为(2,3,-5)) 垂线AB的方程为(x-1)/2=(y-2)/3=(z+3)/(-5) 与平面2x+3y-5z+1=0的交点B即为投影点 所以将上述两个方程联立解出B(-5/19,2/19,3/19)

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/5406789.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-10
下一篇 2022-12-11

发表评论

登录后才能评论

评论列表(0条)

保存