三角形内接圆的半径如何求解

三角形内接圆的半径如何求解,第1张

角形内接圆的半径如何求解

三角形内切圆半径公式:r=2S/(a+b+c)推导:设内切圆半径为r,圆心O,连接OA、OB、OC 得到三个三角形OAB、OBC、OAC 那么,这三个三角形的边AB、BC、AC上的高均为内切圆半径r 所以:S=S△ABC=S△OAB+S△OBC+S△OAC =(1/2...)

与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形三条角平分线的交点。

三角形内切圆的定理:

1、三角形三内角平分线交于一点,内切圆的圆心为三条角平分线的交点。

2、三角形的面积等于周长之半与内切圆半径之积。

三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。

在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。

内切圆的半径为r=2S/C=S/p,当中S表示三角形的面积,C表示三角形的周长,p表示三角形的半周长。

面积法;1/2lr(l周长)用于任意三角形。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/5406918.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-10
下一篇 2022-12-10

发表评论

登录后才能评论

评论列表(0条)

保存