主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我 们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始 变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资 料的综合性指标。由此可见,主成分分析实际上是一种降维方法。
主成分分析(principal component analysis)是1901年Pearson对非随机变量引 入的,1933年Hotelling将此方法推广到随机向量的情形,主成分分析和聚类分析有很 大的不同,它有严格的数学理论作基础。
基本思想
主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求 Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)