数列收敛是什么意思?想必有许多小伙伴对数列收敛存有疑惑。下面,就跟小编一起来了解一下吧。
数列收敛是什么意思
数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得nu003eN时,恒有|Xn-a|
如果数列Xn收敛,每个收敛的数列只有一个极限。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项(当然,只有x在收敛域上rn(x)才有意义,并有limn→∞rn(x)=0
数列收敛和极限的关系
数列收敛则存在极限,这两个说法是等价的;
数列收敛则数列必然有界,但是反过来不一定成立!例如:Xn=1,-1,1,-1,.....|Xn|
设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得nu003eN时,恒有|Xn-a|
设有数列Xn,若存在Mu003e0,使得一切自然数n,恒有|Xn|
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)