R是实数集。实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
拓展资料
R的常用子集
1、Q
有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。
2、N+
正整数集就是即所有正数且是整数的数的集合,是在自然数集中排除0的集合,一直到无穷大。正整数集通常用符号N+、N*、N1、Nu003e0表示。
3、Z
由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)