双曲线与坐标轴两交点的连线段AB叫做实轴。实轴的长度为2a(a为标准方程中的参数)。而虚轴长没有什么实际意义,往往和实轴一起用来讨论渐进线,它的一半就是所谓的表达式中的b。
实轴和虚轴是复数域里的概念,复数z=x+iy,x称为实部,y称为虚部,然后由坐标(x,y)构成的点组成了整个复数域,在坐标平面内,x轴称为实轴,y轴称为虚轴。 如点(1,0),在实轴上取1,虚轴上为0,点位于x轴上,对应复数z=1,虚部为0,为实数。
复数中的实轴
复数可以用平面上的点表示。这使人们对复数有了真实感,同时使复数及复变函数在几何与各种平面物理问题中有了广泛的应用。
在平面上取定直角坐标系 xOy。这时平面上的点 P=(x,y) 便对应于复数 z=x+iy。所以,复数域与平面上的点建立了一一对应。显然,全体实数与 x 轴上的点一一对应。因此,我们把 x 轴称为实轴;而 y 轴称为虚轴(imaginary axis)。与复数建立了这种关系的平面称为复平面(complex plane),这时,平面也称为高斯平面(Gaussian plane)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)