新一代物联网(以下简称“物联网”)是全球第二套计算机通讯网络系统,能全球兼容运行互联网,是由我国多个机构历时20多年潜心研发和实用化而来。我国已经自主建成物联网1条母根,13条主根(N-Z根),开始向全球提供IP地址,并能全面寻址、域名解析,实现跨国界、跨语言、跨系统的通信。
2014年12月4日,经过世界各国多年竞争博弈后,ISO/IEC国际标准组织在其发布的未来网络国际标准中(国标委外函[2014]46号)正式确认:由中国主导未来网络的《命名与寻址》、《安全》等核心标准的制定,并由中国拥有核心知识产权。目前,中国新一代物联网是唯一符合“国际未来网络标准”的计算机通讯网络,代表着新一代互联网的发展方向。值得注意的是,由于英文只有26个字母,分别被中美各13条根服务器占用(首字母索引),导致世界上难以产生第三套计算机通讯网络系统。
新一代物联网抛弃了传统互联网的底层架构及缺陷,其网址基本长度为256位(预留至1024位),其中保留128位用于兼容互联网,实际新增2^128个有效网址,能满足未来700年发展的网址需求。未来太空移民时,再启用预留的网址。物联网采用先认证再通讯、地址可加密等新技术,有效解决互联网的安全架构缺陷。
(新一代物联网应用场景图)
新一代物联网真正实现了万物互联(Internet of Things 简称IoT),其能为带电的物分配一个专属静态IP地址,可通过网络进行解析和联结;也能给不带电的物分配一个专属的物联网编码(RFID电子标签),可通过网络进行解码和查询。我们可以把物联网编码理解为一个简单的IP地址,其对应的是一串简单文本构成的信息链。例如一个苹果,消费者扫一扫其物联网编码,就能显示这个苹果相关的种植、施肥、采摘、包装、售价、发货、运输、签收、购买者、相关日期等信息链。一些厂家宣称已研发出不用IP地址的IoT,这些都是伪IoT,原理无非是构建一个类似聊天群的通讯系统,为每个设备分配一个号,通过添加好友的模式进行物物联结。这些伪IoT只能在自己的软件系统内运行,一旦跨系统,就无法互联。
我国建设和使用物联网,不仅可以节约巨额的互联网使用费,还可以向全球输出更具性价比的物联网服务,进入互联网最具价值的领域,获取巨大的经济利益。随着物联网的建设和使用,我国将能对网络进行大幅度提速、降费,惠及广大人民和企业,极大促进我国网络应用市场和相关产业的蓬勃发展。
由于互联网是虚拟的,极其容易被利用进行违法犯罪活动和网络攻击。近年来,利用互联网虚拟特性进行诈骗的事件层出不穷。另根据中国国家互联网应急中心抽样检测显示: 2011年,有近5万个境外IP网址作为木马或僵尸网络控制服务器,参与控制了我国境内近890万台主机,其中有超过994%的被控主机,源头在美国。新一代物联网通过先认证再通讯、网络地址加密等新技术,可以有效打击电信诈骗和抵御网络攻击。未来基于区块链技术的数字经济(如国家数字货币)的关键应用,目前还只有新一代物联网具备支撑能力。
截止目前,新一代物联网在系统技术、知识产权、国际标准、国家政策、软硬件、服务能力等方面都已充分准备就绪。新一代物联网商用平台已经落地,开始为商用物联网提供根服务、IP地址发放、域名解析等底层网络服务。物联网分为感知层、网络层和应用层这三层,具体如下:
1、感知层由各种传感器以及传感器网关技术架构图,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。感知层的作用相当于人的眼耳鼻喉和皮肤等神经末梢,它是物联网识别物体、采集信息的来源,其主要功能是识别物体,采集信息。
2、网络层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。
3、应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。
大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
大数据产生的根本原因在于感知式系统的广泛使用。随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。
2)数据的汇集和存储
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了
数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。 数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。
3)数据的管理
大数据管理的技术也层出不穷。在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。其中分布式存储与计算受关注度最高。上图是一个图书数据管理系统。
4)数据的分析
数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。批处理是先存储后处理,而流处理则是直接处理数据。挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
5)大数据的价值:决策支持系统
大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。
6)数据的使用
大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。
二、大数据基本架构
基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。
Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:
Hadoop体系架构
(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。
(2)Hadoop的核心是MapReduce(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Reduce则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。当处理大数据查询时,MapReduce会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。
(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。Hbase利用MapReduce来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。
(4)Sqoop是为数据的互 *** 作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。
(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。
(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。
Hadoop核心设计
Hbase——分布式数据存储系统
Client:使用HBase RPC机制与HMaster和HRegionServer进行通信
Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况
HMaster: 管理用户对表的增删改查 *** 作
HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据
HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table
HStore:HBase存储的核心。由MemStore和StoreFile组成。
HLog:每次用户 *** 作写入Memstore的同时,也会写一份数据到HLog文件
结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:
应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。
数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用惯,从而改进使用体验。基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。
数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。丰富的数据源是大数据产业发展的前提。数据源在不断拓展,越来越多样化。如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这降低了数据的价值。
三、大数据的目标效果
通过大数据的引入和部署,可以达到如下效果:
1)数据整合
·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;
·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;
·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。
2)数据质量管控
·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;
·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。
3)数据共享
·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;
·以实时或准实时的方式将整合或计算好的数据向外系统提供。
4)数据应用
·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;
·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;
·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
一、什么是农业物联网?No1:农业物联网是农业现代化的重要标志
农业物联网的实质是将物联网技术应用于农业生产经营,使其更具有信息化、智能化。农业物联网的实例化应用就是在感知端使用大量的传感设备(如农业环境信息的传感器、图像采集、RFID 等),广泛地采集农业生产、管理、经营等环境的各类信息(如大田种植、设施园艺、畜牧水产养殖、农产品溯源等领域),建立相对统一的数据传输协议与多源的数据格式转换办法,因地制宜交互使用无线传感器网、移动通信网和互联网等传输通道,实现农业信息多尺度、多源有效的传递。最后通过云计算、大数据等多重信息技术的深度融合与处理,通过智能化调控终端实现农业的闭环控制,实现农业的自动化、最优化控制。实际上,物联网是智慧农业的核心。
“农业物联网主要有感知、传输和控制三大作用,”中国农科院信息所所长许世卫解释,“农业物联网不仅能感知水、肥、热、气等外部环境变量,还能感知生物本体,比如对水稻叶片中的各种营养元素的感知。如果感知到水稻叶片中叶绿素含量降低,说明缺氮了,需要添加氮肥,而等到肉眼看到叶片发黄再追肥就晚了。”
No2:农业物联网架构模型
根据计算机网络架构模型的研究方法,国内外将农业物联网架构模型分为感知层、传输层(网络层)、处理与应用层三个层次。
感知层主要包括各类传感器、RFID、RS、GPS以及二维条形码等,采集各类农业相关信息(包括光、温度、湿度、水分、肥力、土壤墒情、土壤电导率、溶解氧、酸碱度和电导率等),实现对“物”的相关信息的识别和采集。传输层是在现有网络基础上,将感知层采集的各类农业相关信息通过有线或无线方式传输到应用层 ;同时,将应用层的控制命令传输到感知层,使感知层的相关设备采取相应动作,比如开关打开或者关闭、释放氧气、增加温度或者湿度以及设备重新定位等。
公共处理平台包括各类中间件以及公共核心处理技术,实现信息技术与行业的深度结合,完成物品信息的沟通、共享、决策、汇总等。
具体的应用服务系统是基于物联构架的农业生产架构模型的最高层,主要包括各类具体的农业生产过程系统,如大田种植系统、设施园艺系统、水产养殖系统、畜禽养殖系统、农产品物流系统等。通过这些系统的具体应用,保证产前正确规划以提高资源利用率,产中精细管理以提高资源利用率,产后高效流通实现安全溯源等多个方面,促进农业的高产、优质、高效、生态、安全。
(转自搜狐科技网)
二、农业物联网未来发展趋势
目前,我国农业正处于传统农业向现代农业转型期,农业物联网将发挥独特而重要的作用,也为现代农业的发展提供了前所未有的机遇。利用智能化信息管理技术发展现代农业已成为当今各个发达国家农业发展的热点之一。
农业物联网发展现状:2013年,农业部发布了《农业物联网区域试验工程工作方案》,方案中明确提出,实施区试工程,对于探索农业物联网理论研究、系统集成、重点领域、发展模式及推进路径,提高农业物联网理论及应用水平,促进农业生产方式转变、农民增收有重要意义。从深层次阐述了物联网技术能够提高农业生产效率,提升农产品附加值,实现农业增产与增收。
在发达国家,智慧农业已进入知识的处理、自动控制的开发以及网络技术的应用,渗透到农业各方面。 据介绍,国外采用物联网相关技术,在温室生产中大量采用无线传感器管理、调控温度湿度、营养液供给以及pH值(氢离子浓度指数)、EC值(可溶性盐含量)等,使设施蔬菜栽培条件达到最适宜水平。
借助物联网技术和云计算技术,在远程支持与服务平台上,建立智慧农业远程托管中心,实现远程栽培指导、远程故障诊断、远程信息监测、远程设备维护等;将植物生长信息和生物技术、食品安全技术相结合,从种植各个环节解决农产品的安全问题;充分利用先进的RFID、物联网、云计算等技术,实现农业生产监测管理和产品安全追溯。目前,这项技术不但达到国际先进水平,而且已推向全国市场,广泛应用于现代农业园区、大型农场、农业专业合作社等,深受用户的认可,取得了较好的成绩。
农业物联网,即在大棚控制系统中,运用物联网系统的温度传感器、湿度传感器、Ph值传感器、光传感器、CO2传感器等设备,检测环境中的温度、相对湿度、Ph值、光照强度、土壤养分、CO2浓度等物理量参数,通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使种植人员在办公室就能对多个大棚的环境进行监测控制。采用无线网络来测量获得作物生长的适宜条件,可以为温室精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益。
种植业离不开浇水、施肥、打药,农民种地凭经验、靠感觉,他们面朝黄土背朝天的在田里耕作,并把这些经验与方法一代代相传,然而现在瓜果蔬菜该不该浇水,施肥、打药,怎样才能保持精确的浓度,温度、湿度、光照、CO2浓度,如何实行按需供给?这些以往在作物不同生长周期凭经验靠感觉“模糊”处理的问题,在农业物联网面前开始了实时定量的“精确”把关。物联网创造的“种地”模式的出现,已经成为打破传统农业弊端的一种新型农业模式。这种通过物联网技术开启的智慧风暴,让农业实现了“环境可测、生产可控、质量可溯”的目标。确保农产品质量安全,引领现代农业发展。
(转自搜狐网-鑫芯物联)
编辑于 2018-05-26 · 著作权归作者所有
赞同 1
评论
展
介于应用系统和系统软件之间的一类软件,它使用系统软件所提供的基础服务(功能),衔接网络上应用系统的各个部分或不同的应用,能够达到资源共享、功能共享的目的。
中间件为一种独立的系统软件服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源,中间件位于客户机服务器的 *** 作系统之上,管理计算资源和网络通信。从这个意义上可以用一个等式来表示中间件:中间件=平台+通信,这也就限定了只有用于分布式系统中才能叫中间件,同时也把它与支撑软件和实用软件区分开来。
扩展资料
中间件技术创建在对应用软件部分常用功能的抽象上,将常用且重要的过程调用、分布式组件、消息队列、事务、安全、链接器、商业流程、网络并发、>
在商业中间件及信息化市场主要存在微软阵营、Java阵营、开源阵营。阵营的区分主要体现在对下层 *** 作系统的选择以及对上层组件标准的制订。主流商业 *** 作系统主要来自Unix、苹果公司和Linux的系统以及微软视窗系列。
参考资料来源:百度百科-wipi
参考资料来源:百度百科-中间件
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)