物联网应用技术学什么就业方向

物联网应用技术学什么就业方向,第1张

就业方向参考如下:
目前非纯软件产品的IT公司基本都会有物联网人才的需求,这样的企业包括手机、通信、医疗、家用电器、安防等众多行业,例如三星、西门子、飞利浦、通用电器、思科、华为、大唐电信等IT知名企业目前正在招聘物联网工程师。
物联网工程师,其实很多公司都在招聘,去各大招聘网站搜搜就知道,不过很多公司招聘名称可能不是招物联网工程师,物联网概念是新的,但涉及的一些核心技术是很早就有的,楼主可以看下自己的优势,嵌入式技术,传感技术,RFID技术,哪个自己更擅长,可以在招聘网站搜这样的一些关键词。
科普小知识:
物联网,虽然是个新名词,但核心技术都是老的,其实其他高校专业课程里多有涉及到的,比如涉及的三大核心技术:传感器技术、RFID标签、嵌入式系统技术,其中传感器技术RFID技术,通信类专业里有,有的是选修,嵌入式系统技术,很多高校都有嵌入式专业,嵌入式工程师也是目前行业薪资待遇及发展前景不错的,三大技术都是比较成熟的技术也都有不错的发展前景。
物联网目前正处于高速发展阶段,其用途遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。由于其应用覆盖的广泛性,物联网对人才的需求非常大,学员的就业面非常广泛,现在有很多企业在大量招聘物联网研发工程师,就业前景非常好。

给大家科普一下物联网卡正确的购买方式,一般情况下,我们办卡物联网卡常常有这么几种方式

方法一:直接和运营商合作,这个需要走流量,当然你首先得有量,而且公司资质齐全,比如每个月需要十万张以上,具体优惠力度跟你采购的数据成正比,数量少的话也很难直接合作。即使合作了,也是没有优惠。
代理商一般每个月出卡在几百万不等,所以,一般情况下代理商和运营商是直接对接合作比较多。

方法二,和第三方公司合作,这个不需要有太多的流程,在数据上面也没有什么强制性的要求,而且目前正规的代理商公司也有很多,比较51物联卡、大赢物联等等,都是有公司及网站支持的,在销售物联网卡上面是非常诚信的,而且口碑也都不错。
这种代理商公司一般都是直接和企业合作,在数量上面没有要求,而且一般还会送测试卡,让你测试物联网卡的稳定性,还是很靠谱的。

方法三,个人渠道,这种一般常常在微信、QQ等进行宣传,用无限流量卡的噱头往个人市场销售,这都是不正规的,物联网卡虽然可以用在手机上,但是售后很多,比如会经常遇到不能正常上网、被封卡等等,各种理由推脱售后,毫无保障。

所以,各位朋友在办理时,一定要注意辨别这三种办理途径,先问有没有网站,用不用实名、办理需要交什么费用等等,尽量多咨询一些问题。就是这些啦,整理不易,看完记得点个赞再走呀~

物联网导论考试一般能过,只要期末前两周好好听课及复习一般都没有问题。

物联网工程是新专业,目前好像还没有毕业生,我是我们学校第二届物联网工程专业的学生。
公共课程有高等数学、离散数学、线性代数、近代史、马克思等等,这些课程只要你好好听课,考试就不是问题。

专业课程有C语言、C++、数据库、单片机、RFID、计算机网络原理、无线网络技术等等,这些好好学考试也不是问题,但关键是,这些课程是我们专业的核心,学习它不只是为了应付考试,更为以后的生活。

物联网导论:

本书系统地阐述了物联网的层次结构和功能划分,提出物联网四层体系结构模型,从感知识别、网络构建、管理服务、综合应用这4层分别进行阐述,深入浅出地为读者拨开萦绕于物联网的重重迷雾,引领求知者步入物联网世界。

本书在强调基本理念的基础上,也注意辨析易混淆的相近概念,避免造成认识上的误区,适合作为大学本科或研究生课程教材。作者团队为相关课程任课教师提供完整的教学课件(PowerPoint幻灯片)。此外,本书也可作为物联网科普读物。

百度百科--物联网导论

TWS为”True Wireless Stereo”的缩写,是“真正的无线立体声”的意思。

2016年蓝牙技术联盟在伦敦正式发布了最新的蓝牙50技术标准。官方表示,全新蓝牙50标准在性能上将远超蓝牙42LE版本,包括在有效传输距离上将是42LE版本的4倍。

从蓝牙10 到50:

蓝牙50性能全方位提升

传输能力:蓝牙50 在低功耗模式下具备更快更远的传输能力,传输速率是蓝牙42 的两倍,有效传输距离是蓝牙42 的四倍,数据包容量是蓝牙42 的八倍。

室内导航:支持室内定位导航功能,结合WiFi 可以实现精度小于1 米的室内定位

智能家居:针对IoT 物联网进行底层优化,力求以更低的功耗和更高的性能为智能家居服务。

蓝牙的应用场景

蓝牙50的高传输带宽也让TWS真无线蓝牙耳机的双边通话成为了可能,目前市面上主要BT-TWS蓝牙耳机和使用蓝牙50手机型号如下:

国内重点公司介绍:

1 立讯精密

AirPods初始组装供应商为中国台湾的英业达,歌尔2018年导入,当前产能和良率仍在爬坡;立讯17年导入供应链并且受益于产线自动化的优势,预期将充分受益于AirPods的爆发。

立讯精密2019年第一季度实现营业收入9019亿元,同比增长6690%;归属于上市公司股东的净利润616亿元,同比增长8504%;落在之前指引区间(70%~90%)的高位区间!一季度营收以及利润的增长主要得益于airpods的放量,同时立讯指引2019年1-6月归属于上市公司股东的净利润为140~157亿,同比增长70%~90%,大部分受益于airpods等新品的利润率爬坡,立讯凭借自身强大的项目落地能力使得公司业绩能够继续实现快速增长。

公司以连接器起家,不断丰富其产品线。公司19年开始有LCP天线、无线充电、线性马达等多个新品导入,我们判断公司新品良率提升超出预期;在声学方面,公司持续拓展声学组件和振动马达的市场份额,积极完善技术以及提升产品良率,努力缩小与行业龙头的距离。此外,公司还将继续受益AirPods的份额继续提升和上量。公司与大客户合作多年,产品技术以及服务都收到了客户的认可,未来份额也有望继续提升。

公司在通信和 汽车 的长线业务开始取得进展,其中通信业务全面布局有线、无线和光模块业务,已经在海外几家主力设备客户中取得积极进展。5G时代有望成长新的利润增厚。光模块方面,基站侧目前以6G/10G 为主,未来有望逐渐升级到25G/100G。公司5G 基站用滤波器产品已有部分产品小批量出货。在新能源 汽车 领域,公司与国内客户新产品线进展顺利。随着新能源 汽车 持续放量,国内外客户逐渐导入,有望成为新的增长动力。

2 兆易创新

每颗耳机均需要一颗128M NOR Flash用来存储固件及相关代码,每一快屏幕需要一颗8-16M NOR用于demura光学补偿,且由于低功耗要求高目前格局良好,A股龙头厂商正在加速切入、份额超预期。

新款airpods 发布,相关第三方机构第一时间进行细致拆解,我们认为从中能够石锤TWS耳机对高阶128M NOR flash的需求拉动,同时除苹果外基于联发科及高通CSR平台的产品亦采用了类似方案,我们继续强调,TWS耳机将成为消费电子2019-2020年的一抹亮色、同时亦将成为高阶NOR的X因素。

主业“存储+IoT”业务逆势向上,产品结构+新产品放量突破。兆易作为典型高 科技 成长性公司,成长路线由16年NOR到17年NAND到18年DRAM,市场空间将按照十倍打开。公司主业围绕“存储+IoT”逐步完善“存储-处理-传感-传输”布局,2005年来从SRAM→NOR→MCU→NAND,新品持续迭代推出。而这也正是我们一直以来强调优质 科技 公司高 科技 红利转化效率、成长性突出的本质。强执行力下产品结构优化、工艺迭代带来的成本下降是公司核心竞争力所在,四季度公司高阶NOR Flash占比继续提升、SLC NAND进一步放量,有望继续实现稳健成长。

得DRAM者得天下,三大领域需求驱动DRAM继续成长。2017年开启全球半导体第四次硅含量提升周期,物联网、AI、智能驾驶与5G四大核心创新应用将驱动数据量指数式增长,进而驱使全球存储器需求大爆发,第四次硅含量提升周期内,存储器芯片将成为推动半导体集成电路芯片行业上行的主要抓手。第四波硅含量提升周期的四大核心创新驱动是AI、物联网、5G与智能驾驶,从人产生数据到接入设备自动产生数据,数据呈指数级别增长!智能驾驶智能安防对数据样本进行训练推断、物联网对感应数据进行处理等大幅催生内存性能与存储需求。

并购思立微切入AI人机交互,打造“MCU-存储-交互”一体化解决方案。思立微为国内市场领先的智能人机交互解决方案供应商,产品以触控芯片和指纹芯片等新一代智能移动终端传感器SoC芯片为主。本次收购有助于兆易丰富芯片产品线,拓展客户和供应商渠道,在整体上形成完整系统解决方案。上海思立微将一定程度上补足兆易在传感器、信号处理、算法和人机交互方面的研发技术,提升相关技术领域的产品化能力。

3 歌尔股份

声学器件与MEMS为国内领先厂商。声学器件不断升级,加入立体声、防水、智能化等创新,公司具备先进声学器件设计与生产能力,在大客户中份额领先;同时,公司在微电子领域持续加强布局,MEMS麦克风、MEMS动传感器占据市场领先地位,并在半导体芯片研发和封测和SIP方面加强投入,未来有望保持持续成长。

随着无线蓝牙耳机的兴起,歌尔领先布局TWS耳机整机设计组装及核心声学元件,在市场占有绝对领先地位,并为客户提供整体技术解决方案,有望迎来新的业绩增长点。

公司积极布局AR\VR市场。根据中国信息通信院的最新数据显示,全球虚拟现实产业规模接近千亿元人民币,2017-2022年均复合增长率有望超过70%。在整体规模方面,根据Greenlight预测,2018年全球AR\VR市场规模超过700亿元人民币,同比增长126%,预计2020年全球虚拟现实产业规模将超过2000亿元,歌尔全面布局虚拟现实产业链,并积极投入研发和生产,有望带来新的成长动能。

4、瀛通通讯

电声元器件行业领先玩家。瀛通通讯是国内领先的专业从事声学产品、数据线及其他产品的研发、生产和销售的先进制造企业。公司专注于以耳机用微细通讯线材为代表的各类电声产品、数据线及其他产品的研发、生产和销售。根据2018年快报,公司营收为902亿元,同比增长2501%,收入的大幅增长主要受益于声学产品销售量持续增加,2018年归母净利润为6529%,同比下降239%。利润下降主要是受原材料成本的提升和公司新事业部成立而产生的早期成本。随着下游无线耳机需求上升,预期2019年营收及利润会实现大幅增长。

TWS提供耳机用声学产品新动力。随着智能机外观功能的不断进化,配件也不断升级,加上用户对耳机轻便化的需求,无线耳机应运而生。根据GFK数据,2016年无线耳机出货量仅918万台,市场规模不足20亿元。GFK预计2018年无线耳机出货量同比增加41%,市场规模将达54亿美金。到了2020年TWS无线耳机的市场规模将达到110亿美金。预计随着无线耳机音质以及功能性持续改善,未来无线耳机的渗透率有望继续提升,随着无线耳机市场的不断扩大,耳机用声学产品市场也将水涨船高。

积极扩产为需求储备产能。随着终端产品出货量不断上升,未来预期也将持续上涨,公司目前产能难以满足未来市场需求,另一方面,电声元器件行业主要采取以销定产的业务模式,为配合核心客户偶发大额订单的及时交付,公司需保留一定的产能d性,也使得产能扩充成为必要需求,因此公司于2017年进行IPO为产能扩张项目募资。通过募投项目的实施,公司产品覆盖产业链的范围将产品由生产链中上游向下游逐步延伸,有助于提升公司在产业链中的地位和知名度,缩短与核心客户的合作半径。相信公司在坚持研发、精益管理的前提下不断进行产能的扩充能使公司获得更好的规模效益

5、共达电声

2019年一季度扭亏为盈。公司是专业的电声元器件及电声组件制造商和服务商、电声技术解决方案提供商,主营业务为微型电声元器件及电声组件的研发、生产和销售,主要产品包括微型麦克风、车载麦克风、微型扬声器/受话器及其阵列模组,广泛应用于移动通讯设备及其周边产品、笔记本电脑、平板电视、个人数码产品、 汽车 电子等消费类电子产品领域。2018 年实现营业收入805亿元,同比增长227 %;实现归母净利润021亿元。同时公司发布一季度业绩指引,预计实现归属上市公司股东净利润0-300万元,同比增长100%-12069%,实现扭亏为盈。

收购万魔声学,垂直整合产业链。万魔声学是一家主要从事耳机、音箱、智能声学类产品以及关键声学零部件的研发设计、制造和销售的企业,除小米公司外,万魔还成功开发了ODM业务客户华为、亚马逊、爱奇艺、华硕、酷我、咕咚、网易、京东、腾讯等知名客户。共达电声拟通过向万魔声学全体股东发行股份的方式,收购万魔声学100%股权。共达与万魔声学处于产业链的上下游,双方合体后,将真正在业务上实现协同效应。万魔声学预计2019年-2021年净利润分别为15亿元、22亿元和28亿元。

2021中国物联网大会在无锡召开,此次大会的内容有:

由中国电子学会和中国通信学会主办的2021中国物联网大会在锡隆重召开。会上,宣布无锡将作为中国物联网大会永久举办地。又一张有科技含量的名片,也算是芯片产业链应用场景研究和应用的延伸。这个只是无锡物联网领域的开胃菜,下个礼拜在无锡举办的世界物联网博览会才是重头戏。

无锡市关于“科创中国”试点城市建设方案的重点工作,无锡市科协积极推动中国电子学会、中国通信学会与无锡物联网创新促进中心联合建立产学研融通组织。无锡物联网研究院作为产学研融通组织由中国电子学会、中国通信学会与无锡物联网创新中心联合发起成立,旨在构建产学研深度融合的技术创新体系,助力物联网领域关键技术攻关,加强物联网领域创新人才培养,促进技术成果转移转化,合力将无锡打造成为全球物联网产业高地。2021世界物联网博览会智慧环保高峰论坛今天上午开幕,论坛由无锡市人民政府主办,宜兴市人民政府、中国宜兴环保科技工业园承办,以探索智慧环保新路径,打造双碳先行示范区为主题,在政、产、学、研各界嘉宾的热烈探讨中进行。 无人机发展峰会暨无人机大赛开幕式今晚在无锡市中心老体育场举行。

800架次的无人机在天空中编队组成一个个美丽的图案,为市民呈上了一道精彩纷呈的科技盛宴。作为无锡应用示范重点项目,轻舟智航自动驾驶微循环小巴车队将落地无锡核心CBD区域,并首次发布网约功能,提供多线路常态化运营,服务市民日常通勤。无锡体育公园周末将上演无人机盛宴。2021世界物联网博览会无人机发展峰会暨无人机大赛召开新闻发布会开幕式上的无人机表演会非常精彩,双休日两天的比赛将对市民开放,市民可以参与各类体验活动。赛事类型包含无人机竞速赛、无人机足球赛。无人机竞速赛分为成人组、青少年组、残疾人组,旨在全面体现无人机竞技的多样性,打造一个顶尖、高综合性、娱乐性无人机竞技科普体育赛事新概念。

6月6日,中国5G商用牌照已经正式发放,花落四家机构。值此值得纪念的时刻,给大家分享一篇有关5G的科普文章。

一、电磁波

要说5G,不懂点电磁波是不行的。提问:仙人掌能防电脑辐射吗?知道答案的大盆友直接看后半篇,下面这段写给小盆友。

日常生活中,除了原子电子之外,剩下的几乎全是电磁波,红外线、紫外线、太阳光、电灯光、wifi信号、手机信号、电脑辐射、核辐射,等等。只要是波,就逃不过三个参数:波速、波长、振幅。电磁波的速度是恒定的光速,因此只需考虑:波长(或频率)、振幅(不考虑方向),其中 频率对于电磁波来说,尤为重要。

频率越高,对应着电磁波的波长越短,能量越高,衰减越快,穿透性越差,散射越少,对人体伤害越大。就着这个原则,咱从头到尾捋一遍。

长的电磁波波长能到 1亿米, 频率3Hz,1秒钟三个波,如果用来通信的话,等你一句话说完,就可以过年了。

稍微正常点的电磁波, 波长几万米, 用这通信,就一个字:稳!江河大山都挡不住,甚至能穿透几十米深的海水(海水导电,是电磁波的克星)。不过就这点频率,只能勉强携带点信息,发一个hello,大概需要半小时,也就比写信稍微强点。因为超长波实在是稳,一般用在岸台向潜艇单向发送命令。

再短点, 几十米波长的电磁波, 频率就到了百万赫兹MHz级别,能携带的信息就很可观了,一句话至少能说利索了。而且照样还能跑很远,几百公里不在话下,所以收音机广播、电报、业余无线电一般用这个频段。

说点有用的,假如你困在荒岛上,有个飞机路过,赶紧用1215MHz呼救,这是民用紧急通信频率,还有个军用紧急通信频率243MHz,这些都是不加密的公共频率。上次解放军和台军战机对峙,双方用这个频率对话,结果被无线电爱好者录下来放网上了,吃瓜群众喜闻乐见之余,又担心我军通信太容易被破解,真是阿弥陀佛了。

波长再短点, 到了1米~1厘米, 就有意思了。一方面,虽然衰减已经很明显了,但一口气还能跑个百十公里,够用;另一方面,频率到了GHz级别,能携带足够多的信息,不但话能说利索了,还有多余功夫让你加个密什么的。所以这个波段是通信的焦点,什么1G2G3G4G,什么卫星通信雷达通信,全在这,统称微波通信。

到了毫米级, 电磁波就跑不了多远了,虽然毫米波不太发散,但很容易被周边物质吸收或反射,几乎没啥穿透性,用来通信很鸡肋,不过用在导d导引雷达或微波炉上棒棒的。但,毕竟频率超过了30GHz,携带的信息量实在太馋人,要不还是试试吧!于是,5G来了。

5G同志先等等,继续往下数,来到 微米级。 毫无疑问,能携带的信息量继续倍增,但波长07微米的电磁波就已经是可见光了。可见光都见过吧,别说穿墙了,一张纸都够呛,想接着按照7G8G9G的套路肯定走不通啊。然后,就有了激光通信,发射端和接收端必须瞄得准准的,中间还不能有阻挡,这优缺点自个儿体会体会。

波长到了03微米, 也就是300纳米,先别管频率的事了,这玩意儿就是我们熟知的紫外线,终于对人体有害了。太阳光里的紫外线大约占了4%,如果你一天能晒上半小时太阳的话,那么前面提到的那些电磁波辐射基本可以无视了(不要钻电磁共振的牛角尖,咱只说普遍情况)。

波长200纳米的紫外线, 在太阳光中几乎是没有的,所以在阳光太强时,紫外线通信就成了激光通信很好的补充,不但隐蔽性更好,还不用对得那么准,在几公里的距离上非常好用,是近些年军事通信的研究热点。

接下来就和通信无关了, 波长到了纳米级就成了X光, 就是在医院见到的那种,这么说的话,X光其实也能叫纳米技术(这是玩笑)。

最后, 波长短到了001纳米以下,这就是闻之色变的伽马射线, 来自核辐射,全宇宙最强的能量形式之一!若是要毁灭一个星系,伽马射线是不二之选。实际上,科学家一直怀疑,超新星爆炸产生的伽马射线爆已经毁灭了绝大部分的宇宙文明,好在太阳系处于比较角落的地带,周边恒星不多。

终于说完了波长频率,那振幅呢?连仙人掌能不能防辐射都不知道,也就没必要了解振幅的含义了,直接跳过。

二、1和0

回到微波通信。

为什么频率越高,能携带的信息就越多?以数字信号为例,信息就是一串串的1和0,所以先搞清楚怎样用电磁波表示1和0。

第一种方法叫 “调幅”, 基本思路是调整电磁波的振幅,振幅大的表示1,振幅小的表示0,如下图。收音机的AM就是调幅,缺点颇多。

第二种方法叫 “调频”, 基本思路是调整频率来表示1和0,比如,用密集的波形表示1,疏松的波形表示0。收音机的FM就是调频,优点多多的。

很显然, 在单位时间内,发出的波越多,能表示的1和0就越多,换句话说,频率越高能携带的信息就越多。

这样算起来,频率800MHz意味着每秒产生800万个波,都用来表示1和0的话,1秒钟可以传输100M数据,这速度很快啊!为啥我们感觉不到呢?

古语有云,重要的事情说三遍,通信也是如此。无线电跋山涉水,弄丢几个1,0太正常了,防止走丢的土办法就是抱团。比如,用一万个连续的1表示一个1,哪怕路上走丢了两千个1,最后咱还能认得这是1。

这种傻办法只能用在民用通信,因为特征太明显,很容易被破解。还记得北斗民用信号被破解的新闻吧,原因就在此。

民用信号只要能和其他信号区分开就行,不会弄得太复杂,不然传输效率太低。按2G技术那样,800MHz的频率,传输数据大不过每秒几十K。

军用就两码事了,为了防止被破解,要用很复杂的组合来表示1和0,中间说不定还有很多无效信息,各种跳频技术扩频技术,还不停变换组合,总之越花哨越好。所以同样一句话,军事通信要用掉更多的1,0,因此为了保证传输效率,军用频率就比民用高很多。

就目前来说,顶级破解技术还干不过顶级加密技术,这里不包括尚未成熟的量子通信。

军事对抗是无止境的,干不过也不能认怂!那怎办?既然弄不清楚你的1,0,那我就索性再送你一堆1,0,把你原有的组合搞乱,让你自己人都懵逼。这就是电子对抗的环节,跑题了,还是说回5G。

三、关键技术

前面说的,都是不值钱的原理,下面看看值钱的技术。5G关键技术有一堆说法,咱给粗暴地归个类。

振荡电路插个天线就可以产生电磁波,用特定方法改变电磁波的频率或振幅,变成各种复杂的组合,这个过程叫 调制。 对应的,竖个天线就能收到空中的电磁波,按预定方法变回1,0,这个过程叫 解 调。

把电磁波发到空中,或者把空中的电磁波收下来,都需要天线,别以为现在手机光溜溜的就不需要天线了。手机与手机是无法直接通信的,而是通过周边的基站与别的手机联系。于是,问题来了,5G使用的毫米波在空气中衰减非常严重,但又不能无限制提高发射功率,怎么办呢?只能在天线上做文章了。

5G的第一个关键技术: 大规模多天线阵列。 大白话就是,增加天线的数量,不是增加一个两个,而是几百个。这个思路很好理解,但是呢,用那么多天线发射同一个信号,稍不留神就乱成一锅粥。

多天线加毫米波,对比原先的少天线加厘米波,无线电传播的物理特征肯定不一样,得重新建立信道模型。那信道模型怎么建立呢?相信我,你不会感兴趣的。

天线一多,不但能解决毫米波衰减的问题,传输效率、抗干扰等性能也是蹭蹭涨,算是5G必须课。

曾与华为齐名的大唐电信于2015年率先发布了 256大规模天线, 引爆全球通信业,一时风光无限!可惜后来突然闪崩,沦落到卖科研大楼求生,令人唏嘘!

基站天线搞定,下面就轮到终端机的天线了,这货也有术语: 全双工技术。

一般手机的通信天线只有一个,收发信号交替进行,费劲的很!全双工技术,就是把发信号的天线和收信号的天线分开,收发信号同时进行,优点就不说了。不过,这很难吗?

你想想,把话筒和音响挨在一起,还要求两者能正常工作,你说难吗?大体上分两个思路,其一,物理方法,比如在俩天线之间加屏蔽材料;其二,信号处理,比如无源模拟对消等。

2016年4月华为宣布已于成都5G外场率先完成第一阶段5G关键技术验证,测试结果完全达到预期。其中两个重要验证就是大规模天线技术和全双工技术。

天线搞定了,再来就是 "新多址接入技术", 这词听着真拗口,别急,马上就顺了!

举个例子(数字是胡诌的):

假设手机基站用100Hz表示1,105Hz表示0,这时又接进一个新电话,那新电话的1可以用110Hz,0用115Hz,如果再来新电话,依次类推。这就是1G的思路,简称 FDMA。

这样2个电话就用掉了从100Hz到115Hz的频段,占用的15Hz就叫带宽。外行也看出来了,这路子太费带宽了。好在那会的手机只是传个语音,数据量不大,但也架不住手机数量的增加,很快就不够用了!

换个思路,大家都用100Hz表示1,105Hz表示0,但是第1秒给甲用,第2秒给乙用,第3秒给丙用,只要轮换的好,5Hz的带宽就够3个手机用,就是延时严重点而已。这就是2G的思路,简称 TDMA。

再到后来,数据量越来越大,2G也玩不转了。不过,只要有需求,就不怕没套路:在各自的信号前面加上序列码,再揉成一串发送,接收端按序列号只接受自己的信号。就好像快递员一次性送了一叠信过来,大家按照信封上的名字打开各自的信。这就是3G的思路,简称 CDMA。 如我这把年纪的人,应该都被联通的CDMA广告轰炸过吧?

再发展就是正交频分多址技术,把2个互不干扰的正交信号揉成一串发送。所谓正交信号,和量子力学的叠加态有点类似。把信号叠在一起发送,就是4G的思路,简称 OFDMA。

每个终端在网络上都有一个地址,所以这种让很多手机一起打电话的技术,从1G到4G,统称:多址接入技术。咱5G特别时髦,叫“新多址接入技术”,这货怎么个“新”法呢?

稀疏码多址接入、非正交多址接入、图分多址接入……好吧,我承认有点云里雾里了,总体思路就是叠加更多信号或者把前面的技术混到一起,这里涉及大量的数学知识,奉劝各位好自为之吧!

暂时就说这么多吧,5G要实现10Gb/秒的峰值速率、1百万的连接数密度、1毫秒的时延,必须要先解决这三大关键技术。

2016年4月,华为的第一阶段 “关键技术验证”, 主要也是验证这仨技术。新多址接入采用滤波正交频分复用、稀疏码多址接入、极化码,结合大规模天线,吞吐率提升10倍以上,在100MHz带宽下,平均吞吐量达到36Gb/秒;全双工采用了无源模拟对消、有源模拟对消和数字对消三重对消框架,可以实现113dB的自干扰消除能力,获得了90%以上的吞吐率增益。

2017年6月,华为完成第二阶段 “多种关键技术融合测试及单基站性能测试”, 在200MHz带宽下,单用户下行吞吐率超过6Gb/秒,小区峰值超过18Gb/秒,配套业内首个小型化5G测试终端,单个5G基站可同时支持上百路超高清4K视频。

2018年9月,华为完成第三阶段 “基于独立组网的5G核心网关键技术与业务流程测试”。

这三个阶段测试,华为均以100%通过率顺利完成。

除了三大关键技术之外,无数用户要组成网络,事情自然少不了。比如,分配传输资源和指挥交通一样让人头大,一条道路分配不合理,半个城市就得跟着瘫痪,所以,华为完成关键技术验证后,又花了2年时间才进行独立组网测试。再比如,能耗不能太离谱,价格不能高上天,诸如此类的基本要求。

四、又是芯片

可以看到,5G要处理的数据量远大于4G,所谓数据就是1,0,但凡涉及1,0的东西,基本都用芯片。控制电磁波发射要用射频芯片,编码解码要用基带芯片,等等,这些也属于5G核心关键技术。

2019年1月24日,华为发布了全球首款5G基站核心芯片: 天罡, 以及,全球首款单芯片多模5G基带芯片: 巴龙5000。 既然是世界首款,免不了拿下N个全球第一。

把条件放宽到调制解调芯片,玩家就比较多了。5G的主流频率是28GHz,有能力处理这个频段的芯片,目前是4家。

高通是最早的,三星是唯一做到39GHz的,华为是工艺最先进的,英特尔是哪里都不掉队的,台湾联发科据说马上也要来了。

多说一句,华为2018年2月发布的这款巴龙5G01芯片,因块头太大无法用在手机上,2019年1月就推出了手机使用的巴龙5000,同时还没耽误手机处理器芯片麒麟和服务器芯片鲲鹏,这进展还是不错的!

五、标准

5G涉及的技术实在太多太杂,得订个规矩。立规矩的重要性不比技术研发低,待会你看看欧盟就明白了。

5G标准第一阶段的第一部分已于2018年6月完成并发布,标志着首个真正完整意义的国际5G标准出炉,剩余部分陆续到2020年才能完工。

这次标准发布一共有50家公司参与,中国有中国电信、中国移动、中国联通、华为、中兴、大唐电信等16家,美国8家,欧洲8家,日本13家,韩国5家。

从数量上看,咱还是不错的。从质量上看,咱应该也还是不错的。举个例子:

在信道编码问题上,欧盟一直用Turbo码,美帝高通习惯用LDPC码,华为擅长用Polar码。于是,第一回合欧盟就被干掉了,不但积累的Turbo技术打了水漂,还得重新学LDPC和Polar。

华为和高通继续交锋了两轮。

信道编码分“控制信道编码”和“数据信道编码”,高通的方案是两者都用LDPC码,华为的方案是数据信道用你家的LDPC码,控制信道用Polar码。

然后,联想对华为的方案投了反对票……

当然,联想的投票对结局毫无影响。因为分歧过大,当天只确定数据信道用LDPC码,至于控制信道择日再议。

等择好日,再次投票时,高通、三星、英特尔、爱立信等巨头搜罗了31家公司组成阵营,要求全部用LDPC码,华为则组织了包括联想在内的55家公司力争。最终, 华为Polar成为控制信道编码,高通LDPC成为数据信道编码,大家平分秋色。

这事被翻出来后,联想引起众怒,但华为很贴心地帮着解围。

顺便说个常识:行业标准都还没全出来,5G离全面成熟应用还是有一段路的。

六、场景和意义

因为担心小盆友的想象力不够,所以国际电信联盟召开的ITU-RWP5D第22次会议,确定了5G的三个应用场景:

这图画得实在太差,解释一下:三个角上的三句话是5G的三大功能特点,蓝色小块是应用场景,小块越靠近哪个角就说明对这个功能的依赖越大。后来,这三个角又改成了四个: 连续广域覆盖、热点高容量、低功耗大连接、低时延高可靠……

说晕了,还是本僧用大白话总结一下吧。

就技术而言,5G就三句话: 网速快、信号广、延时少。 但技术带来的改变却超越了想象力,5G是全信息化的基石,完全可以实现当年物联网吹过的牛: 万物互联。

如果非要找个参考的话,可以想象一下:把2G3G4G去掉,回到大哥大时代……不认识大哥大的00后小盆友,可以问问身边的80后老爷爷。

我觉着,5G与4G的差异,比得上4G和1G的差异。

怎么样?懂了不?


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10226060.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存