1加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。
2产品故障诊断与预测
这可以被用于产品售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。
3生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。
4工业供应链分析和优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
5产品销售预测与需求管理
通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。
6生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的APS来说,是一个巨大的挑战。
大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。
帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。
7产品质量管理与分析
传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。
8工业污染与环保检测
工业大数据应用的价值潜力巨大。但是,实现这些价值还有很多工作要做。一个是大数据意识建立的问题。过去,也有这些大数据,但由于没有大数据的意识,数据分析手段也不足,很多实时数据被丢弃或束之高阁,大量数据的潜在价值被埋没。还有一个重要问题是数据孤岛的问题。很多工业企业的数据分布于企业中的各个孤岛中,特别是在大型跨国公司内,要想在整个企业内提取这些数据相当困难。因此,工业大数据应用一个重要议题是集成应用。
工业大数据的应用将推动工业企业基于对内外部环境相关数据的采集、存储和分析,实现企业与内外部关联环境的感知和互联,并利用工业大数据分析技术开展挖掘分析,支撑工业企业基于数据进行决策管控,提升企业决策管控的针对性、有效性。物联网雁飞格物dmp平台物网协同功能有物联网设备管理、物联网数据采集、数据分析和处理、物联网应用开发、物联网安全管理。具体如下:
1、物联网设备管理:雁飞格物DMP平台可以管理大量的物联网设备,包括注册、授权、监控、配置、维护等。这些设备可以是传感器、执行器、控制器等,可以实现数据采集、控制、监测等功能。
2、物联网数据采集:平台可以通过采集物联网设备传输的数据来分析设备状态、控制设备等。可以支持多种协议,包括MQTT、CoAP等,支持实时数据采集和批量数据采集。
3、数据分析和处理:平台可以对采集到的数据进行分析和处理,包括数据清洗、数据存储、数据挖掘、数据建模等。可以通过可视化的方式展现数据分析结果。
4、物联网应用开发:平台提供应用开发的支持,包括API接口、应用模板、应用开发工具等。可以帮助开发人员快速开发出符合业务需求的应用程序。
5、物联网安全管理:平台可以提供物联网设备的安全管理机制,包括身份认证、访问控制、数据加密等。可以确保设备的安全性和数据的保密性。
一、数据链路的传输
1/ 各台测量设备将检测信号转换成数字信息,组装成结构化数据,通过网络传输,到达显示终端。
2/采集系统的规则引擎模块对传感器获知的原始数据进行过滤、富化、转换,数字、波动图、柱状图等实时输出, 后台存储到数据库和本地服务器中以备复查。
3/ 服务器将数据通过互联网可以备份到云端,并展示给控制中心和其他终端用户。
二、选择合适的设备和方案
1、在车间生产线采样各种产品参数、专业设备要确定各种监测常量、测宽/测厚/测径/测长/测高/以及截面轮廓等数据,想要获取一些特殊数值,可能还需要定制特种设备。
2、对设备进行选取,传感器监测数据又与之前提到的配置产品这些数据流转方案不同,还需要考虑的是软件终端上面的具体开发。
3、对服务端进行业务开发,确定实现所需功能,确定接收设备数据和下发控制指令。
4、服务端程序,与传感器建立连接,与反馈终端关联,进行整体联调运行,这点就和各个设备端的上报数据有关,也是关键的一步,一定要专业的工作人员安装调试。
关于传感器数据采集方案大约的概述就是如上面说的这样,更加具体的设备选取和解决方案,还是需要大家自己去了解沟通,也希望能对大家有所帮助。
工业用传感网络层:即以二维码、RFID、传感器为主,实现对“物”或环境状态的识别以及感知信号的摄入;
传输网络层:即通过现有的互联网、广电网、通信网或者下一代互联网(1Pv6),实现数据的传输和计算,尤其是现在流行的概念:云计算:
应用网络层:即输入输出控制终端,包括电脑、手机等终端等等。
从整体上来看,物联网还处于起步阶段,而工业物联网的真正达到实用化、大规模应用,必须解决如下关键技术问题:
工业用传感器:工业用传感器是一种检测装置,能够测量或感知特定物体的状态和变化,并转化为可传输、可处理、可存储的电子信号或其他形式信息。工业用传感器是实现工业自动检测和自动控制的首要环节。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。可以说,没有众多质优价廉的工业传感器,就没有现代化工业生产体系,更谈不上工业物联网。
工业无线网络技术:工业无线网络是一种由大量随机分布的、具有实时感知和自组织能力的传感器节点组成的网状(Mesh)网络,综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,具有低耗自组、泛在协同、异构互连的特点。工业无线网络技术是继现场总线之后工业控制系统领域的又一热点技术,是降低工业测控系统成本、提高工业测控系统应用范围的革命性技术,也是未来几年工业自动化产品新的增长点,已经引起许多国家学术界和工业界的高度莺视。
工业过程建模:没有模型就不可能实施先进有效的控制,传统的集中式、封闭式的仿真系统结构已不能满足现代工业发展的需要。工业过程建模是系统设计、分析、仿真和先进控制必不可少的基础。工业物联网将建立一个工业生产与互联网服务充分交互的互联网体系,它能够影响所有处于工业物联网中的生产设备,工业生产的各个环节、主体之间都可以进行自发性联通和交流,并自行进行调整,以达到最佳的生产状态,从而建立一个具有高度灵活性、个性化、资源最优配置的工业生产体系。近几年,物联网技术已经被广泛应用到各行业的生产流程以及产业结构的调整过程中,在企业的产业结构调整、节能减排、生产效率提升等方面发挥越来越重要的作用。
在工业互联网体系建设中,传统工业自动化可以看做是物联网的一部分,物联网作为信息化和自动化的结合点,具有无限的潜力和优势,有的企业已经看到了物联网在管理流程和生产过程优化方面的潜力,并取得了初步成果。
我们平时所说的工业自动化,主要包括数据采集和分析、信息运输、传感器接收数据并传出下一步指令等环节,而物联网具有全面感知、可靠传递、智能处理等特点,两者在功能本质上是相通的。
物联网与工业自动化的最大不同点在于,其更加强调数据收集和分析以及智能技术在生产环节中的应用,这不仅仅是传统工业自动化生产方式的改变,更是在生产的过程中,引入先进的互联网思维,从生态产业链的循环发展出发,而形成的智能工业化模式。
工业物联网的基础是自动化,其控制系统是计算机技术、系统控制技术和网络通讯技术相结合的产物,注重分散控制,集中管理,在运行的过程中,生产设备通过网络进行连接,并在控制中心由 *** 作员进行集中管理,它还可以将传感器设备安装到公共设施、生产设备、交通工具、数据接收设施等各种真实物体上,通过互联网将生产系统与外部环境连接起来,进而运行特定的程序,达到远程控制或者实现设备的直接沟通,减少沟通环节,提高工业生产效率和质量。●传感器技术:价格低廉、性能良好的传感器是物联网应用的基石,物联网的发展要求更准确、更智能、更高效以及兼容性更强的传感器技术。智能数据采集技术是传感器技术发展的一个新方向。信息的泛在化对传感器和传感装置提出了更高的要求。具体如,微型化:元器件的微小型化,要求节约资源与能源;智能化:具备自校准、自诊断、自学习、自决策、自适应和自组织等人工智能技术;低功耗与能量获取技术:供电方式为电池、阳光、风、温度、振动等多种方式。
●设备兼容技术:大部分情况下,企业会基于现有的工业系统建造工业物联网,如何实现工业物联网中所用的传感器能够与原有设备已应用的传感器相兼容是工业物联网推广所面临的问题之一。传感器的兼容主要指数据格式的兼容与通信协议的兼容,兼容关键是标准的统一。目前,工业现场总线网络中普遍采用的如Profibus、Modus协议,已经较好地解决了兼容性问题,大多数工业设备生产厂商基于这些协议开发了各类传感器、控制器等。近年来,随着工业无线传感器网络应用日渐普遍,当前工业无线的WirelessHART、ISA100.11a以及wIA—PA3大标准均兼容了IEEE802.15.4无线网络协议,并提供了隧道传输机制兼容现有的通信协议,丰富了工业物联网系统的组成与功能。
●网络技术:网络是构成工业物联网的核心之一,数据在系统不同的层次之间通过网络进行传输。网络分为有线网络与无线网络,有线网络一般应用于数据处理中心的集群服务器、工厂内部的局域网以及部分现场总线控制网络中,能提供高速率高带宽的数据传输通道。工业无线传感器网络则是一种新兴的利用无线技术进行传感器组网以及数据传输的技术,无线网络技术的应用可以使得工业传感器的布线成本大大降低,有利于传感器功能的扩展,因此吸引了国内外众多企业和科研机构的关注。
传统的有线网络技术较为成熟,在众多场合已得到了应用验证。然而,当无线网络技术应用于工业环境时,会面临如下问题:工业现场强电磁干扰、开放的无线环境让工业机器更容易受到攻击威胁、部分控制数据需要实时传输。相对于有线网络,工业无线传感器网络技术则正处在发展阶段,它解决了传统的无线网络技术应用于工业现场环境时的不足,提供了高可靠性、高实时性以及高安全性,主要技术包括:自适应跳频、确实性通信资源调度、无线路由、低开销高精度时间同步、网络分层数据加密、网络异常监视与报警以及设备入网鉴权等。
●信息处理技术:工业信息出现爆炸式增长,工业生产过程中产生的大量数据对于工业物联网来说是一个挑战,如何有效处理、分析、记录这些数据,提炼出对工业生产有指导性建议的结果,是工业物联网的核心所在,也是难点所在。
当前业界大数据处理技术有很多,如SAP的BW系统在一定程度上解决了大数据给企业生产运营带来的问题。数据融合和数据挖掘技术的发展也使海量信息处理变得更为智能、高效。工业物联网泛在感知的特点使得人也成为了被感知的对象,通过对环境数据的分析以及用户行为的建模,可以实现生产设计、制造、管理过程中的人一人、人一机和机一机之间的行为、环境和状态感知,更加真实地反映出工业生产过程中的细节变化,以便得出更准确的分析结果。
●安全技术:工业物联网安全主要涉及数据采集安全、网络传输安全等过程,信息安全对于企业运营起到关键作用,例如在冶金、煤炭、石油等行业采集数据需要长时问的连续运行,如何保证在数据采集以及传输过程中信息的准确无误是工业物联网应用于实际生产的前提。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)