——预见2023:《2023年中国物联网产业全景图谱》(附市场规模、竞争格局和发展前景等)
行业主要上市公司:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)等
本文核心数据:物联网产业规模、竞争格局、发展前景预测等
产业概况
1、定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。
2、产业链剖析:共有四大层面
所谓产业链,是以生产相同或相近产品的企业集合所在产业为单位形成的价值链,是承担着不同的价值创造职能的相互联系的产业围绕核心产业,通过对信息流、物流、资金流的控制,在采购原材料、制成中间产品以及最终产品、通过销售网络把产品送到消费者手中的过程中形成的由供应商、制造商、分销商、零售商、最终用户构成的一个功能链结构模式。
从产业链条来看,物联网的产业链条由上而下可以分为感知层、传输层、平台层和应用层四个层级。
自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。
行业发展历程:处于市场验证期
物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等
信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网发展历史悠久,可分为三个阶段:
行业政策背景:政策大力推进
根据最新发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,在“十四五”期间,明确新基建,还要让5G用户普及率提高到56%。并且5次提到关于物联网的规划发展,除了划定数字经济的7大重点产业外,其余4次提到的场合均体现出对物联网发展重点的表述。
十四五规划中划定了7大数字经济重点产业,包括云计算、大数据、物联网、工业互联网、区块链、人工智能、虚拟现实和增强现实,这7大产业也将承担起数字经济核心产业增加值占GDP超过10%目标的重任。
产业发展现状
1、中国物联网连接数快速增长
全球物联网仍保持高速增长。物联网领域仍具备巨大的发展空间,根据GSMA发布的《The mobile economy
2020(2020年移动经济)》报告显示,2019年全球物联网总连接数达到120亿,预计到2025年,全球物联网总连接数规模将达到246亿,年复合增长率高达13%。我国物联网连接数全球占比高达30%,2019年我国的物联网连接数363亿。而根据2021年9月世界物联网大会上的数据,2020年末,我国物联网的数量已经达到453亿个,预计2025年能够超过80亿个。
2、应用层与平台层价值最高
从产业链价值分布看,应用层和平台层贡献最大的附加值,分别占到35%左右,传输连接层虽然重要,但产值规模较小;底层的感知层元器件由于种类众多,产业价值也较大,占到20%左右。
3、物联网应用者使用情况调研
微软发布的第三版《IoT Singal(物联网信号)》报告显示,2021年物联网的应用持续保持增长。91%的受访组织是物联网应用者。
物联网项目可分为四个阶段:学习、试验/概念验证、购买和使用。2021年,29%的物联网项目处于学习阶段;处于试验/概念验证阶段的项目比例仍保持不变,2020年和2021年均为25%;处于购买阶段的项目比例增加了1%,从2020年的21%增加到2021年的22%;处于使用阶段的项目在2020年和2021年保持稳定,均为25%。
4、中国物联网市场规模突破25万亿
目前,物联网已较为成熟地运用于安防监控、智能交通、智能电网、智能物流等。近几年来,在各地政府的大力推广扶持下,物联网产业逐步壮大。再加之近几年厂商对物联网这一概念的普及,民众对物联网的认知程度不断提高,使得我国物联网市场规模整体呈快速上升的趋势。2019年我国物联网市场规模约在176万亿元左右,2020年根据赛迪公布的数据,我国物联网市场规模约达到214万亿元左右。初步统计,2021年市场规模为263万亿元。预计未来三年,中国物联网市场规模仍将保持18%以上的增长速度。中国物联网市场投资前景巨大,发展迅速,在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。
产业竞争格局
1、区域竞争:北京物联网相关项目最多
工信部共公开2批《物联网关键技术与平台创新类、集成创新与融合应用类项目公示名单》,结合2批的项目名单分析,目前中国物联网关键技术与平台创新类、集成创新与融合应用类项目主要集中在北京、浙江、广东和山东。
2、企业竞争:各个行业的企业在相关领域有所布局,以龙头企业间的竞争为主
物联网技术的应用是传统行业转型升级的根本,传统行业转型升级的方向以“数字化”和“智慧化”为主。根据物联网的应用领域来看,企业在各自行业的“数字化”和“智慧化”有所布局。
互联网周刊发布了2021物联网企业100强,榜单显示华为排名第一、海尔智家、海康威视位居第二和第三,小米集团、中兴通讯、大华股份、阿里云、联通数科物联网、科大讯飞、神州控股进入前十,依次排名第4-10名。
产业发展前景:物联网将继续保持高速增长
1、发展前景:市场规模不断扩大,产业物联网占比逐渐上升
物联网是中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。中国以加快转变经济发展方式为主线,更加注重经济质量和人民生活水平的提高,采用包括物联网在内的新一代信息技术改造升级传统产业,提升传统产业的发展质量和效益,提高社会管理、公共服务和家居生活智能化水平。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。综合多方面的情况分析,前瞻认为未来6年中国物联网的发展将保持高速增长,到2027年市场规模超过7万亿元。
根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。
2、发展趋势:重点城市带动周边城市发展,分工协作格局将进一步显现
国内物联网产业已初步形成环渤海、长三角、珠三角,以及中西部地区等四大区域集聚发展的总体产业空间格局。其中,长三角地区产业规模位列四大区域的首位。未来中国物联网产业空间演变将呈现出三大趋势:
更多本行业研究分析详见前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
(二)推动应用示范,促进经济发展。对工业、农业、商贸流通、节能环保、安全生产等重要领域和交通、能源、水利等重要基础设施,围绕生产制造、商贸流通、物流配送和经营管理流程,推动物联网技术的集成应用,抓好一批效果突出、带动性强、关联度高的典型应用示范工程。积极利用物联网技术改造传统产业,推进精细化管理和科学决策,提升生产和运行效率,推进节能减排,保障安全生产,创新发展模式,促进产业升级。
(三)改善社会管理,提升公共服务。在公共安全、社会保障、医疗卫生、城市管理、民生服务等领域,围绕管理模式和服务模式创新,实施物联网典型应用示范工程,构建更加便捷高效和安全可靠的智能化社会管理和公共服务体系。发挥物联网技术优势,促进社会管理和公共服务信息化,扩展和延伸服务范围,提升管理和服务水平,提高人民生活质量。
(四)突出区域特色,科学有序发展。引导和督促地方根据自身条件合理确定物联网发展定位,结合科研能力、应用基础、产业园区等特点和优势,科学谋划,因地制宜,有序推进物联网发展,信息化和信息产业基础较好的地区要强化物联网技术研发、产业化及示范应用,信息化和信息产业基础较弱的地区侧重推广成熟的物联网应用。加快推进无锡国家传感网创新示范区建设。应用物联网等新一代信息技术建设智慧城市,要加强统筹、注重效果、突出特色。
(五)加强总体设计,完善标准体系。强化统筹协作,依托跨部门、跨行业的标准化协作机制,协调推进物联网标准体系建设。按照急用先立、共性先立原则,加快编码标识、接口、数据、信息安全等基础共性标准、关键技术标准和重点应用标准的研究制定。推动军民融合标准化工作,开展军民通用标准研制。鼓励和支持国内机构积极参与国际标准化工作,提升自主技术标准的国际话语权。
(六)壮大核心产业,提高支撑能力。加快物联网关键核心产业发展,提升感知识别制造产业发展水平,构建完善的物联网通信网络制造及服务产业链,发展物联网应用及软件等相关产业。大力培育具有国际竞争力的物联网骨干企业,积极发展创新型中小企业,建设特色产业基地和产业园区,不断完善产业公共服务体系,形成具有较强竞争力的物联网产业集群。强化产业培育与应用示范的结合,鼓励和支持设备制造、软件开发、服务集成等企业及科研单位参与应用示范工程建设。
(七)创新商业模式,培育新兴业态。积极探索物联网产业链上下游协作共赢的新型商业模式。大力支持企业发展有利于扩大市场需求的物联网专业服务和增值服务,推进应用服务的市场化,带动服务外包产业发展,培育新兴服务产业。鼓励和支持电信运营、信息服务、系统集成等企业参与物联网应用示范工程的运营和推广。
(八)加强防护管理,保障信息安全。提高物联网信息安全管理与数据保护水平,加强信息安全技术的研发,推进信息安全保障体系建设,建立健全监督、检查和安全评估机制,有效保障物联网信息采集、传输、处理、应用等各环节的安全可控。涉及国家公共安全和基础设施的重要物联网应用,其系统解决方案、核心设备以及运营服务必须立足于安全可控。
(九)强化资源整合,促进协同共享。充分利用现有公共通信和网络基础设施开展物联网应用。促进信息系统间的互联互通、资源共享和业务协同,避免形成新的信息孤岛。重视信息资源的智能分析和综合利用,避免重数据采集、轻数据处理和综合应用。加强对物联网建设项目的投资效益分析和风险评估,避免重复建设和不合理投资。物联网的发展前景很不错,具体如下:
1更安全的保护措施。在新技术出现之初,它的技术力量几乎都集中在创新上,导致监管水平低下,这就使业界的兴奋、激进和政策、监管的滞后常常形成鲜明的对比。由于物联网设备和基础设施的价格下降,企业在物联网设备上的应用也越来越普遍,这种创新和应用一旦普及,各种新技术的风险也突显出来。
2更普遍使用智能消费品设备。IoT所覆盖的行业人群广泛,从智慧交通、智能物流、医疗、农业、能源等行业应用,到私人智能家居、个人、智能汽车等应用,无论是降低成本,还是提高中国居民的生活质量,都将是中国居民生活质量的巨大提升。物联网的发展前景很不错,具体如下:
1更安全的保护措施。在新技术出现之初,它的技术力量几乎都集中在创新上,导致监管水平低下,这就使业界的兴奋、激进和政策、监管的滞后常常形成鲜明的对比。由于物联网设备和基础设施的价格下降,企业在物联网设备上的应用也越来越普遍,这种创新和应用一旦普及,各种新技术的风险也突显出来。
2更普遍使用智能消费品设备。IoT所覆盖的行业人群广泛,从智慧交通、智能物流、医疗、农业、能源等行业应用,到私人智能家居、个人、智能汽车等应用,无论是降低成本,还是提高中国居民的生活质量,都将是中国居民生活质量的巨大提升。
我们在了解人工智能技术的时候,对于深度学习的概念进行了一次普及,今天我们就一起来学习一下深度学习对于物联网的发展都有哪些影响作用。下面北京电脑培训就开始今天的主要内容吧。
技术
在物联网时代,大量的感知器每天都在收集并产生着涉及各个领域的数据。由于商业和生活质量提升方面的诉求,应用物联网(IoT)技术对大数据流进行分析是十分有价值的研究方向。这篇论文对于使用深度学习来改进IoT领域的数据分析和学习方法进行了详细的综述。从机器学习视角,作者将处理IoT数据的方法分为IoT大数据分析和IoT流数据分析。论文对目前不同的深度学习方法进行了总结,并详细讨论了使用深度学习方法对IoT数据进行分析的优势,以及未来面临的挑战。
在本系列文章中,已介绍了深度学习和长短期记忆(LSTM)网络,展示了如何生成用于异常检测的数据,还介绍了如何使用Deeplearning4j工具包。本篇文章中,将介绍开源机器学习系统ApacheSystemML如何通过动态地优化执行并利用ApacheSpark作为运行时引擎,帮助执行线性代数运算。并展示了在时序传感器数据(或任何类型的一般序列数据)上,即使非常简单的单层LSTM网络的性能也优于先进的异常检测算法。
GoogleAssistant和其他自然语言理解平台正在推动用户如何使用他们的技术。无论是执行器诸如设置计时器之类的简单任务,还是进行更复杂的任务(例如Google智能助理调整恒温器),您都可以参与其中。在这篇文章中,逐步介绍了如何构建自己的助手应用程序,通过简单地要求Google来控制AndroidThings设备来浇灌植物。
开源
tinyweb是一个用于在运行有MicroPython的ESP8266/ESP32等微型设备之上的简单轻便的>
Mynewt是一款适用于微型嵌入式设备的组件化开源 *** 作系统。ApacheMynewt使用Newt构建和包管理系统,它允许开发者仅选择所需的组件来构建 *** 作系统。其目标是使功耗和成本成为驱动因素的微控制器环境的应用开发变得容易。Mynewt提供开源蓝牙50协议栈和嵌入式中间件、闪存文件系统、网络堆栈、引导程序、FATFS、引导程序、统计和记录基础设施等的支持。
AngularIotDashboard是一个基于Angular4的物联网领域的仪表板。它是一个适用于任何浏览器的实时兼容仪表板,其目标是成为智能家居,智能办公室和工业自动化的d性前端。拥有许多可重用组件,开发者可以基于AngularIoTDashboard启发和实施自己版本的托管物联网仪表板。
硬件
FemtoUSB是一个基于Atmel的ARMCortexM0+产品ATSAMD21E18A的开源ARM开发板。其被设计成对那些对ARM设计感兴趣的人的基础起点,特别那些准备从AVR8位硬件转换到功能非常强大的ARM32位工具。其从电路板设计,原理图和零件清单完全是开源的,可以让开发者学习设计ARM芯片、编译工具链、ARM芯片的基本的电路图等等的内容。
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。
在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;
在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。
一、智能交通
物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;
高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。
社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。
该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。
二、智能家居
智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;
通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;
智能体重秤,监测运动效果。内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况;
智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备,你及时出门在外,以在任意时间、地方查看家中任何一角的实时状况,任何安全隐患。看似繁琐的种种家居生活因为物联网变得更加轻松、美好。
三、公共安全
近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,互联网可以实时监测环境的不安全性情况,提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
美国布法罗大学早在 2013 年就提出研究深海互联网项目,通过特殊处理的感应装置置于深海处,分析水下相关情况,海洋污染的防治、海底资源的探测、甚至对海啸也可以提供更加可靠的预警。该项目在当地湖水中进行试验,获得成功,为进一步扩大使用范围提供了基础。
利用物联网技术可以智能感知大气、土壤、森林、水资源等方面各指标数据,对于改善人类生活环境发挥巨大作用。
趋势和特征
物联网近年来的主要显着趋势是由互联网连接和控制的设备的爆炸性增长。物联网技术的广泛应用意味着从一个设备到另一个设备的具体细节可能大不相同,但大多数人都具有基本特征。
物联网为将物理世界更直接地集成到基于计算机的系统中创造了机会,从而提高了效率、经济效益和减少了人力。
物联网设备的数量在 2017 年同比增长 31% 至 84 亿,预计到 2020 年将有 300 亿台。物联网的全球市场价值预计为到 2020 年达到 71 万亿美元。
环境智能和自主控制并不是物联网最初概念的一部分。环境智能和自主控制也不一定需要互联网结构。然而,(英特尔等公司)的研究发生了转变,将物联网和自主控制的概念结合起来,初步成果朝着这个方向发展,将物体视为自主物联网的驱动力。
在这种情况下,一种有前途的方法是深度强化学习,其中大多数物联网系统提供动态和交互式环境。训练代理(即 IoT 设备)在这样的环境中表现得更聪明,无法通过传统的机器学习算法(例如监督学习)来解决。
通过强化学习方法,学习代理可以感知环境状态(例如,感知家庭温度),执行 *** 作(例如,打开或关闭暖通空调)并通过最大化其长期获得的累积奖励来学习。
可以在三个级别提供物联网智能:物联网设备、边缘/雾节点和云计算。每个级别对智能控制和决策的需求取决于物联网应用的时间敏感性。例如,自动驾驶汽车的摄像头需要进行实时障碍物检测以避免发生事故。
通过将数据从车辆传输到云实例并将预测返回给车辆,这种快速决策是不可能的。相反,所有 *** 作都应在车辆本地执行。集成高级机器学习算法,包括深度学习物联网设备是一个活跃的研究领域,使智能对象更接近现实。
此外,通过分析物联网数据、提取隐藏信息和预测控制决策,可以从物联网部署中获得最大价值。物联网领域使用了各种各样的机器学习技术,从回归、支持向量机和随机森林等传统方法到卷积神经网络、LSTM和变分自动编码器等高级方法。
未来,物联网可能是一个非确定性和开放的网络,其中自动组织或智能的实体(Web 服务、SOA组件)和虚拟对象(化身)将可互 *** 作并能够独立行动(追求自己的目标)目标或共享目标)取决于上下文、情况或环境。
通过上下文信息的收集和推理以及对象检测环境变化(影响传感器的故障)并引入合适的缓解措施的能力的自主行为构成了一个主要的研究趋势,显然需要为物联网技术提供可信度。
市场上的现代物联网产品和解决方案使用各种不同的技术来支持这种上下文感知自动化,但需要更复杂的智能形式,以允许在真实环境中部署传感器单元和智能网络物理系统。
以上内容参考 百度百科-物联网
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)