系统简介
水肥一体化智能控制系统通过与灌溉系统相结合,实现智能化控制。系统由物联网监控平台、气象数据采集终端、视屏监控、施肥一体机、过滤系统、阀门控制器、电磁阀、田间水管线等组成。
图为河南益民控股5G+智慧辣椒种植基地水肥一体化系统控制中心
概述
水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力系统(或地形自然落差),将可溶性固体或液体肥料,按土壤养分含量和作物种类的需肥规律和特点,配兑成的肥液与灌溉水一起,通过可控管道系统供水、供肥,使水肥相融后,通过管道、喷q或喷头形成喷灌、均匀、定时、定量,喷洒在作物发育生长区域,使主要发育生长区域土壤始终保持疏松和适宜的含水量,同时根据不同的作物的需肥特点,土壤环境和养分含量状况,需肥规律情况进行不同生育期的需求设计,把水分、养分定时定量,按比例直接提供给作物。
系统原理图
水肥一体化系统通常包括水源工程、首部枢纽、田间输配水管网系统和灌水器等四部分,实际生产中由于供水条件和灌溉要求不同,施肥系统可能仅由部分设备组成。
水肥一体机
水肥一体机系统结构包括:控制柜、触摸屏控制系统、混肥硬件设备系统、无线采集控制系统。支持pc端以及微信端实施查看数据以及控制前端设备;水肥一体化智能灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。通过与供水系统有机结合,实现智能化控制。可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。
施肥系统
水肥一体化施肥系统原理由灌溉系统和肥料溶液混合系统两部分组成。灌溉系统主要由灌溉泵、稳压阀、控制器、过滤器、田间灌溉管网以及灌溉电磁阀构成。肥料溶液混合系统由控制器、肥料灌、施肥器、电磁阀、传感器以及混合罐、混合泵组成。
41:输配水管网系统
由干管、支管、毛管组成。干管一般采用PVC管材,支管一般采用PE管材或PVC管材,管径根据流量分级配置,毛管目前多选用内镶式滴灌带或边缝迷宫式滴灌带;首部及大口径阀门多采用铁件。干管或分干管的首端进水口设闸阀,支管和辅管进水口处设球阀。
输配水管网的作用是将首部处理过的水, 按照要求输送到灌水单元和灌水器,毛管是微灌系统的最末一级管道,在滴灌系统中,即为滴灌管,在微喷系统中,毛管上安装微喷头。
42:环境数据采集器
421气象信息采集
环境数据采集器由低功耗气象传感器、低功耗气象数据采集控制器和计算机气象软件三部分组成。可同时监测大气温度、大气湿度、土壤温度、土壤湿度、雨量、风速、风向、气压、辐射、照度等诸多气象要素;具有高精度高可靠性的特点,可实现定时气象数据采集、实时时间显示、气象数据定时存储、气象数据定时上报、参数设定等功能。
422土壤墒情采集
土壤检测仪可实现对土壤不同深度的温度、湿度、EC、 PH等数据监控,通过5G信号传输至AI农大数据平台,借助于大数据平台的综合建模分析,从而给出土壤土质的综合评级,并语音播报。
43:无线阀门控制器
阀门控制器是接收由田间工作站传来的指令并实施指令的下端。阀门控制器直接与管网布置的电磁阀相连接,接收到田间工作站的指令后对电磁阀的开闭进行控制,同时也能够采集田间信息,并上传信息至田间工作站,一个阀门控制器可控制多个电磁阀。
电磁阀是控制田间灌溉的阀门,电磁阀由田间节水灌溉设计轮灌组的划分来确定安装位置及个数。
44:灌水器系统
微灌按微灌灌水流量小,一次灌水延续时间较长,灌水周期短,需要的工作压力较低,能够较精确的控制灌水量,能把水和养分直接地输送到作物根部附近的土壤中去。
系统功能
51:用水量控制管理
实现两级用水计量,通过出口流量监测作为本区域内用水总量计量,通过每个支管压力传感采集数据实时计算各支管的轮灌水量,与阀门自动控制功能结合,实现每一个阀门控制单元的用水量统计。同时水泵引入流量控制,当超过用水总量将通过远程控制,限制区域用水。
52:运行状态实时监控
通过水位和视频监控能够实时监测滴灌系统水源状况,及时发布缺水预警;
通过水泵电流和电压监测、出水口压力和流量监测、管网分干管流量和压力监测,能够及时发现滴灌系统爆管、漏水、低压运行等不合理灌溉事件,及时通知系统维护人员,保障滴灌系统高效。
53:阀门自动控制功能
通过对农田土壤墒情信息、小气候信息和作物长势信息的实时监测,采用无线或有线技术,实现阀门的遥控启闭和定时轮灌启闭。根据采集到的信息,结合当地作物的需水和灌溉轮灌情况制定自动开启水泵、阀门,实现无人职守自动灌溉,分片控制,预防人为误 *** 作。
54:PC展示平台
通过物联网水肥一体化智能监测平台,能够为用户提供传感器数据、远程、采集、传输、储存、处理及报警信息发送等服务。该平台以集中式分区化的方式为用户提供便捷、经济、有效的远程监控整体解决方案。通过物联网智能监测平台,用户可以不受时间、地点限制对监控目标进行实时监控、管理、观看和接收报警信息。
55:移动终端
建立手机系统,客户直接采用微信客户端就可以控制和查看实时数据,手机端具有手动启动、关闭电磁阀,水泵等设备功能。
56:运维管理功能
包括系统维护、状态监测和系统运行的现场管理;实现区域用水量计量管理、旱情和灌溉预报专家决策、信息发布等功能的远程决策管理;以及对用水、耗电、灌水量、维护、材料消耗等进行统计和成本核算,对灌溉设施设备生成定期维护计划,记录维护情况,实现灌溉工程的精细化维护运行管理。
节水灌溉自动化控制系统能够充分发挥现有的节水设备作用,优化调度,提高效益,通过自动控制技术的应用,更加节水节能,降低灌溉成本,提高灌溉质量,将使灌溉更加科学、方便,提高管理水平。
工业互联网体系架构。根据查询相关资料信息显示,在工业互联网体系架构中,数据采集属于工业物联网的范畴,是工业互联网体系架构的一个重要模块。工业物联网是指基于物联网技术,将工业设备、工业数据、工业控制等资源进行互联互通和数据共享,实现生产过程全面数字化、智能化和自动化的一种新型工业模式。在工业物联网中,数据采集是指通过各种传感器、监测设备等实现对生产过程中各种物理量、参数、状态等信息的获取和采集,并将这些数据传输到云平台或数据中心进行处理和分析。 大数据泛指巨量的数据集,因可从中挖掘出有价值的信息而受到重视。《华尔街日报》将大数据时代、智能化生产和无线网络革命称为引领未来繁荣的三大技术变革。麦肯锡公司的报告指出数据是一种生产资料,大数据是下一个创新、竞争、生产力提高的前沿。世界经济论坛的报告认定大数据为新财富,价值堪比石油。因此,发达国家纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手。大数据时代的来临
互联网特别是移动互联网的发展,加快了信息化向社会经济各方面、大众日常生活的渗透。有资料显示,1998年全球网民平均每月使用流量是1MB(兆字节),2000年是10MB,2003年是100MB,2008年是1GB(1GB等于1024MB),2014年将是10GB。全网流量累计达到1EB(即10亿GB或1000PB)的时间在2001年是一年,在2004年是一个月,在2007年是一周,而2013年仅需一天,即一天产生的信息量可刻满188亿张DVD光盘。我国网民数居世界之首,每天产生的数据量也位于世界前列。淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。百度公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。一个8Mbps(兆比特每秒)的摄像头一小时能产生36GB数据,一个城市若安装几十万个交通和安防摄像头,每月产生的数据量将达几十PB。医院也是数据产生集中的地方。现在,一个病人的CT影像数据量达几十GB,而全国每年门诊人数以数十亿计,并且他们的信息需要长时间保存。总之,大数据存在于各行各业,一个大数据时代正在到来。
信息爆炸不自今日起,但近年来人们更加感受到大数据的来势迅猛。一方面,网民数量不断增加,另一方面,以物联网和家电为代表的联网设备数量增长更快。2007年全球有5亿个设备联网,人均01个;2013年全球将有500亿个设备联网,人均70个。随着宽带化的发展,人均网络接入带宽和流量也迅速提升。全球新产生数据年增40%,即信息总量每两年就可以翻番,这一趋势还将持续。目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模大到无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理。
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。首先,大数据反映舆情和民意。网民在网上产生的海量数据,记录着他们的思想、行为乃至情感,这是信息时代现实社会与网络空间深度融合的产物,蕴含着丰富的内涵和很多规律性信息。根据中国互联网络信息中心统计,2012年底我国网民数为564亿,手机网民为42亿,通过分析相关数据,可以了解大众需求、诉求和意见。其次,企业和政府的信息系统每天源源不断产生大量数据。根据赛门铁克公司的调研报告,全球企业的信息存储总量已达22ZB(1ZB等于1000EB),年增67%。医院、学校和银行等也都会收集和存储大量信息。政府可以部署传感器等感知单元,收集环境和社会管理所需的信息。2011年,英国《自然》杂志曾出版专刊指出,倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥科学技术对社会发展的巨大推动作用。
大数据应用的领域
大数据技术可运用到各行各业。宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值。印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向。有资料显示,全球零售商因盲目进货导致的销售损失每年达1000亿美元,这方面的数据分析大有作为。
在农业领域,硅谷有个气候公司,从美国气象局等数据库中获得几十年的天气数据,将各地降雨、气温、土壤状况与历年农作物产量的相关度做成精密图表,预测农场来年产量,向农户出售个性化保险。在商业领域,沃尔玛公司通过分析销售数据,了解顾客购物习惯,得出适合搭配在一起出售的商品,还可从中细分顾客群体,提供个性化服务。在金融领域,华尔街“德温特资本市场”公司分析34亿微博账户留言,判断民众情绪,依据人们高兴时买股票、焦虑时抛售股票的规律,决定公司股票的买入或卖出。阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。目前已放贷300多亿元,坏账率仅03%。
在医疗保健领域,“谷歌流感趋势”项目依据网民搜索内容分析全球范围内流感等病疫传播状况,与美国疾病控制和预防中心提供的报告对比,追踪疾病的精确率达到97%。社交网络为许多慢性病患者提供临床症状交流和诊治经验分享平台,医生借此可获得在医院通常得不到的临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在社会安全管理领域,通过对手机数据的挖掘,可以分析实时动态的流动人口来源、出行,实时交通客流信息及拥堵情况。利用短信、微博、微信和搜索引擎,可以收集热点事件,挖掘舆情,还可以追踪造谣信息的源头。美国麻省理工学院通过对十万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规律性,进行犯罪预测。在科学研究领域,基于密集数据分析的科学发现成为继实验科学、理论科学和计算科学之后的第四个范例,基于大数据分析的材料基因组学和合成生物学等正在兴起。
麦肯锡公司2011年报告推测,如果把大数据用于美国的医疗保健,一年产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。
大数据技术的挑战和启示
目前,大数据技术的运用仍存在一些困难与挑战,体现在大数据挖掘的四个环节中。首先在数据收集方面。要对来自网络包括物联网和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。其次是数据存储。要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。第三是数据处理。有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。第四是结果的可视化呈现,使结果更直观以便于洞察。目前,尽管计算机智能化有了很大进步,但还只能针对小规模、有结构或类结构的数据进行分析,谈不上深层次的数据挖掘,现有的数据挖掘算法在不同行业中难以通用。
大数据技术的运用前景是十分光明的。当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义,我们必须重新认识数据的重要价值。
为了开发大数据这一金矿,我们要做的工作还很多。首先,大数据分析需要有大数据的技术与产品支持。发达国家一些信息技术(IT)企业已提前发力,通过加大开发力度和兼并等多种手段,努力向成为大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。有些日常生活信息看似无关紧要,其实从中也可摸到国家经济和社会脉搏。因此,我们需要有自主可控的大数据技术与产品。美国政府2012年3月发布《大数据研究与发展倡议》,这是继1993年宣布“信息高速公路”之后又一重大科技部署,联邦政府和一些部委已安排资金用于大数据开发。我们与发达国家有不少差距,更需要国家政策支持。
中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。例如,提供各地天气与航班延误的关系,推动航空公司提升正点率。
大数据的挖掘与利用应当有法可依。去年底全国人大通过的加强网络信息保护的决定是一个好的开始,当前要尽快制定“信息公开法”以适应大数据时代的到来。现在很多机构和企业拥有大量客户信息。应当既鼓励面向群体、服务社会的数据挖掘,又要防止侵犯个体隐私;既提倡数据共享,又要防止数据被滥用。此外,还需要界定数据挖掘、利用的权限和范围。大数据系统本身的安全性也是值得特别关注的,要注意技术安全性和管理制度安全性并重,防止信息被损坏、篡改、泄露或被窃,保护公民和国家的信息安全。
大数据时代呼唤创新型人才。盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。
大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域;目前,其标准和产业格局尚未形成,这是我国实现跨越式发展的宝贵机会。我们要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手,但要注意科学规划,切忌一哄而上。
智能工厂中设备数据采集的意义在于实现对工厂生产流程、设备运行状态等各种信息的实时监测和数据收集,利用这些数据进行分析和优化,从而提高生产效率和产品质量。设备数据采集是智能制造实施的一个重要手段,可帮助企业实现生产流程信息化、自动化和数字化转型。
解决方案如下:
选择合适的传感器和监测设备:根据生产过程的特点和需求,选择合适的传感器和监测设备来收集设备运行状态、温度、湿度、压力、振动等多项参数数据。这些传感器可以通过网络连接,将数据自动上传到云端或局域网服务器,进一步便于数据的全面收集和管理。
数据采集系统的设计与集成:针对企业的特定需求,设计并集成符合企业应用场景的大数据采集系统。例如,可采用物联网技术搭建基于Wifi、蓝牙、NB-IoT等通信协议的数据采集平台。
制定数据清洗和归档策略:构建数据清洗和预处理算法确保实时数据的快速、准确存储。同时要根据业务需求和行业标准,制定完善的数据归档策略以确保数据及时备份和安全存储。
数据分析利用:从采集到的设备数据中提取信息并进行统计、分析,得出生产过程缺陷、故障情况等生产数据分析结果,则可以反馈给生产管理者,帮助其及时解决问题,更好地优化生产流程和提升产品质量。
综上,智能工厂中设备数据采集对企业来说至关重要。通过选择合适的传感器和监测设备、构建高效的数据采集系统以及采用高效的数据管理和分析技术,可以实现工厂生产数据的自动化收集和快速分析,并最终实现生产过程的数字化与智能化。
物联网的体系结构可以分为感知层,网络层和应用层三个层次。
感知层。是物联网发展和应用的基础,包括传感器或读卡器等数据采集设备、数据接入到网关之前的传感器网络。感知层以RFID、传感与控制、短距离无线通信等为主要技术,其任务是识别物体和采集系统中的相关信息,从而实现对“物”的认识与感知。
网络层。是建立在现有通信网络和互联网基础之上的融合网络,网络层通过各种接入设备与移动通信网和互联网相连,其主要任务是通过现有的互联网、广电网络、通信网络等实现信息的传输、初步处理、分类、聚合等,用于沟通感知层和应用层。目前国内通信设备和运营商实力较强,是我国互联网技术领域最成熟的部分。
应用层。是将物联网技术与专业技术相互融合,利用分析处理的感知数据为用户提供丰富的特定服务。应用层是物联网发展的目的。物联网的应用可分为控制型、查询型、管理型和扫描型等,可通过现有的手机、电脑等终端实现广泛的智能化应用解决方案。
资料拓展:
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。
因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
物联网智能网关要接入MES系统,需要从下面几个方面讨论:1、多种采集协议的适配:车间设备一般具有多种接口和多种自动化协议,常见的有modbus、PPI、MPI、Profinet、hostlink等,接口一般为RS485、以太网、can口等。
2、具备边缘计算能力:物联网智能网关必须具备边缘计算能力,而不是傻瓜式的透传。可以对数据进行本地化预处理,然后再与MES服务器交互,这样能极大减轻MES服务器的压力。
3、与MES服务器间的通信规约和数据格式:物联网网关与MES服务器见需要支持实时性非常强的通信规约,如MQTT、DICP等,而不是普通的自动化协议。同时约定好传输的数据格式,以被MES服务器解析。
帝图数据采集器适合于用在MES系统的数据采集,比如汽车生产线的数据采集、变电站的数据采集等。电梯远程安全预警是一款集成视频监控及短信报警,GPRS无线数据传输功能为一体的高智能安全预警系统,适用于所有的直升电梯,在不改变电梯现有电器线路的情况下,通过光电采集器和磁感应传感器采集数据,能在电视监视器上指示电梯所在楼层数、运行方向、停止、卡层、冲顶、蹲底和电梯名称等,当电梯发生故障时可在第一时间向电梯维护和抢修人员发送含有电梯当前详细信息(电梯所在小区及具体位置,故障名称,电梯所在层及运行方向,电梯内是否有人)的短信报警,并在视频监控墙上进行闪烁报警。
湖南中菱控网电梯物联可以实现数据采集、GPRS无线传输、视频物联网技术、智能分析功能、电子地图管理、远程管理、短信报警等功能。转载自济南智嵌测控技术。iv数据采集是离线数据采集技术工具,开放API工具开发的。
离线数据采集技术,首先要是基于文件的数据采集系统、日志收集系统等,代表性的工具有Facebook公司开发的Scribe、Cloudera公司开发的Flume和Apache基金会支持的Chukwa等;其次是基于数据库和表的数据采集技术,基于数据库的数据采集系统中代表性工具有GoldenGate 公司的TMD、迪思杰公司而数据采集软件、IBM公司的CDC、MySQL支持的Binlog 采集工具等;在基于表的批量抽取软件中,广泛应用的是Sqoop和其他ETL工具。
开放API类,即数据源提供者开放的数据采集接口,可以用来软取限定的数据。在外部数据中,除了互联网数据采集技术,也有基于传感器应用的采集技术,这种技术在物联网中用得较多。此外,还有电信公司特有的探针技术,例如,我们在打电话、利用手机上网时,电信公司的路由器、交换机等设备中都会有数据交换,探针就是从这些设备上采集数据的技术。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)