卷积码是一种差错控制编码,由PElias于1955年发明。因为数据与二进制多项式滑动相关故称卷积码。卷积码在通信系统中应用广泛,如IS-95,TD-SCDMA,WCDMA,IEEE 80211及卫星等系统中均使用了卷积码。
卷积码使用(n,k,L)表示,码率为R。
n为输出码字;
k为输入的比特信息;
L为约束长度,也称为记忆深度。
R表示为R = k/n。
卷积码是一种有记忆的纠错码,编码规则是将k个信息比特编码形成n个比特,编码后的n个码元不但与当前输入的k个信息有关,仍与之前的L-1组的信息有关,其结构如下图1所示,图1来自Goldsmith的著作。

图中表示有L级信息比特,每次输入k比特信息,共有kL个比特,每次输出n个比特信息,可以明显地看出该n个比特信息不仅与当前输入的k个比特信息有关,与之前L-1组信息比特也有关,所以卷积码是有记忆的编码,记忆深度为L。
注:此处与其他常见表示方法不同,此处将输入的比特做了缓存,所以记忆深度不一样,L看寄存器的个数确定。
2、卷积码表示方法
图2是输出码长n=2,记忆深度L为2,输入比特k=1的,(2,1,2)卷积码编码器。用该例说明卷积码的以下几种表示方法。

21 生成多项式
生成多项式使用K-1阶的多项式描述编码器的移位寄存器和模二加法器的连接状态。每个模二加法器的连接可表示成一个多项式。多项式的次数输入的阶次为0,其余按寄存器数的移位次数依次递增。如上图
输出1: g1(x) = 1 + x + x^2
输出2: g2(x) = 1 + x^2
以下是IEEE 80211标准中的卷积码编码器,生成多项式分别为:
输出1: g1(x) = 1 + x^2 + x^3+ x^5 + x^6
输出2: g2(x) = 1 + x + x^2 +x^3 + x^6

22 状态图
状态图是关于系统状态变化的描述,它将由系统的输入,根据当前的系统状态,影响系统的输出。卷积码编码器存储的L-1段消息,既要因新的消息输入而改变,又要影响当前的编码输出,把卷积码编码器的移位寄存器中任一时刻所存储的信息称为卷积码编码器的一个状态。
(n,k,L)卷积码共有2^(k(L-1))个状态,每次输入k比特只有2^k种状态变化,所以,每个状态只能转移到全部状态的某个子集(2^k个状态)中去,每个状态也只能由全部状态的某个子集(2^k个状态)转移而来。
(2,1,2)卷积码编码器包含2级移位寄存器和2个模2加法器。2级移位寄存器共有2^2=4种不同状态,定义为S0(00)、S1(01)、S2(10)和S3(11)四种状态。在每个时刻,输入的1个比特信息,当前状态将转为4种状态中的任何一种。

状态表类似查找表,原理即根据当前的输入和当前的状态,可以从表中查得输出信息。图4为卷积码的状态转移图,图中的状态转移表示“输入/输出1输出2”。

卷积编码码率是什么
为了支持高效、灵活的传输方式,信道编码技术需要考虑到各种不同的传输码率和调制方式,兼顾HARQ重传技术以及链路自适应技术。为此,信道编码技术常常使用打孔或者重复的方法,从编码比特流中提取预定长度比特序列,这个过程称为速率匹配。研究表明,均匀并且对称的打孔或者重复模式能够获得最优的速率匹配性能。均匀的打孔或者重复模式是指打孔或者重复的比特位置的分布是均匀的,以避免连续的比特位置上的比特被打孔或者重复。
TD-LTE中卷积码速率匹配的原理如图3-31所示。卷积编码器输出的第一、二和三校验比特流分别独立地交织后,被比特收集单元依次收集,也就是交织后的第一、二和三校验比特流依次输入到缓冲器中。每次传输时,比特选择单元从缓冲器头部的比特开始逐位读取,直至达到预定的比特数。当读取到缓冲器的尾部,仍然没有达到预定的比特数时,比特选择单元自动跳至缓冲器的头部继续读取。卷积码的这种基于缓冲器的速率匹配的过程,被称为循环缓冲器速率匹配(CBRM)。
TD-LTE采用的卷积编码器是码率为1/3的最优距离谱编码器,内嵌码率为1/2的最优距离谱编码器,这种编码编码方法能够保证获得优异的纠错性能。如图3-31所示,卷积码速率匹配时,比特收集单元在收集3个比特流时,3个比特流是依次被收集,这样能够保证卷积码通过速率匹配得到码率为1/2码字时,其距离谱仍然是最优的。
TD-LTE卷积码速率匹配采用的交织器是一个简单的行列交织器,如图3-32所示,交织器执行按行写入、内部列交织、按列读出的简单 *** 作。行列交织器的列数固定为32,交织前,需要根据每个比特流的长度,计算得到行列交织器的行数,并根据需要在行列交织器的第一行的头部进行补零 *** 作。在基于循环缓冲器进行速率匹配时,交织器的使用能够保证卷积码的打孔或者重复模式是均匀的,从而获得优异的卷积码速率匹配性能。另外,由于卷积码和Turbo码采用了一致的速率匹配方法,因此基站和终端能够采用一致的算法实现卷积码和Turbo码的速率匹配。

卷积编码1/2码率是什么
(1)对输入的数据进行卷积编码,编码速率为1/2,即每输入1个比特编码输出2个比特。
(2)将每次编码输出的2个比特量化为相应的数值,通过每一组数值计算出该组4个状态(s0,s1,s2,s3)的分支度量值,即BM值。
(3)进行加比选(ACS)运算,同时保存路径信息。首先在0时刻给4个状态(s0,s1,s2,s3)赋初始路径向量值(PM):假如起始点为状态s0,则状态s0的初始路径向量值为PM0=100(该数值根据实际的情况来定,如回溯深度和分支度量值等,以便计算),状态s1、状态s2、状态s3的初始路径向量赋值为PM1=PM2=PM3=0。
(4)ACS过程。因为到达每一个状态有两条路径(如图3),例如到达状态s0(00)的两条路径分别是s0(00)和s1(01),从中选出到达s0路径度量值最大的一条路径作为幸存路径。如图2,若从0时刻到1时刻:BM0=-8,BM1=0,max{PM0+BM0,PM1+BM1}=PM0+BM0=92,所以1时刻到达状态s0的保留路径为0时刻从状态s0来的路径,从而更新1时刻s0的PM0=92;同时由于1时刻到达s0的是“0”路径,所以保存的该时刻s0的路径信息是0(若是“1”路径,则保存的该时刻s0的路径信息为1)。以此类推,可求出该时刻到达状态s1、s2、s3的幸存路径,存储该路径信息,更新其路径度量值PM。
(5)输出判决(OD),即回溯过程,就是根据回溯深度以及ACS过程中所保存的PM值和幸存路径信息进行相应的算法回溯出译码结果。(1)抗干扰能力强、无噪声积累。在模拟通信中,为了提高信噪比,需要在信号传输过程中及时对衰减的传输信号进行放大,信号在传输过程中不可避免地叠加上的噪声也被同时放大。随着传输距离的增加,噪声累积越来越多,以致使传输质量严重恶化。�
对于数字通信,由于数字信号的幅值为有限个离散值(通常取两个幅值),在传输过程中虽然也受到噪声的干扰,但当信噪比恶化到一定程度时,即在适当的距离采用判决再生的方法,再生成没有噪声干扰的和原发送端一样的数字信号,所以可实现长距离高质量的传输。�
(2)便于加密处理。信息传输的安全性和保密性越来越重要,数字通信的加密处理的比模拟通信容易得多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密、解密处理。
(3)便于存储、处理和交换。数字通信的信号形式和计算机所用信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储、处理和交换,可使通信网的管理、维护实现自动化、智能化。�
(4)设备便于集成化、微型化。数字通信采用时分多路复用,不需要体积较大的滤波器。设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小、功耗低。�
(5)便于构成综合数字网和综合业务数字网。采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。另外,电话业务和各种非话业务都可以实现数字化,构成综合业务数字网。�
(6)占用信道频带较宽。一路模拟电话的频带为4kHz带宽,一路数字电话约占64kHz,这是模拟通信目前仍有生命力的主要原因。随着宽频带信道(光缆、数字微波)的大量利用(一对光缆可开通几千路电话)以及数字信号处理技术的发展(可将一路数字电话的数码率由64kb/s压缩到32kb/s甚至更低的数码率),数字电话的带宽问题已不是主要问题了。
以上介绍可知,数字通信具有很多优点,所以各国都在积极发展数字通信。近年来,我国数字通信得到迅速发展,正朝着高速化、智能化、宽带化和综合化方向迈进。�
数字信号的产生
(1)模拟信号�
信号波形模拟着信息的变化而变化,模拟信号其特点是幅度连续(连续的含义是在某一取值范围内可以取无限多个数值)。模拟信号,其信号波形在时间上也是连续的,因此它又是连续信号。模拟信号按一定的时间间隔T抽样后的抽样信号,由于其波形在时间上是离散的,它又叫离散信号。但此信号的幅度仍然是连续的,所以仍然是模拟信号。电话、传真、电视信号都是模拟信号。��
(2)数字信号
数字信号其特点是幅值被限制在有限个数值之内,它不是连续的而是离散的。二进码,每一个码元只取两个幅值(0,A):四进码,每个码元取四(3、1、-1、-3)中的一个。这种幅度是离散的信号称数字信号。
信号数字化过程
信号的数字化需要三个步骤:抽样、量化和编码。抽样是指用每隔一定时间的信号样值序列来代替原来在时间上连续的信号,也就是在时间上将模拟信号离散化。量化是用有限个幅度值近似原来连续变化的幅度值,把模拟信号的连续幅度变为有限数量的有一定间隔的离散值。编码则是按照一定的规律,把量化后的值用二进制数字表示,然后转换成二值或多值的数字信号流。这样得到的数字信号可以通过电缆、微波干线、卫星通道等数字线路传输。在接收端则与上述模拟信号数字化过程相反,再经过后置滤波又恢复成原来的模拟信号。上述数字化的过程又称为脉冲编码调制。
抽样�
话音信号是模拟信号,它不仅在幅度取值上是连续的,而且在时间上也是连续的。要使话音信号数字化并实现时分多路复用,首先要在时间上对话音信号进行离散化处理,这一过程叫抽样。所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列,如图2-4所示。抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。理论和实践证明,只要抽样脉冲的间隔T≤12fm(或≥2fm)(fm是话音信号的最高频率),则抽样后的样值序列可不失真地还原成原来的话音信号。��
例如,一路电话信号的频带为300~3400Hz,fm=3400Hz,则抽样频率fs≥2×3400=6800Hz。如按6800Hz的抽样频率对300~3400Hz的电话信号抽样,则抽样后的样值序列可不失真地还原成原来的话音信号,话音信号的抽样频率通常取8000Hz/s。对于PAL制电视信号。视频带宽为6MHz,按照CCIR601建议,亮度信号的抽样频率为135MHz,色度信号为675MHz。�
量化
抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。这就要对幅值进行舍零取整的处理,这个过程称为量化。量化有两种方式,示于图2-5中。图2-5(a)所示的量化方式中,取整时只舍不入,即0~1伏间的所有输入电压都输出0伏,1~2伏间所有输入电压都输出1伏等。采用这种量化方式,输入电压总是大于输出电压,因此产生的量化误差总是正的,最大量化误差等于两个相邻量化级的间隔Δ。图(b)所示的量化方式在取整时有舍有入,即0~05伏间的输入电压都输出0伏,05~1�5伏间的输出电压都输出1伏等等。采用这种量化方式量化误差有正有负,量化误差的绝对值最大为Δ/2。因此,采用有舍有入法进行量化,误差较小。
实际信号可以看成量化输出信号与量化误差之和,因此只用量化输出信号来代替原信号就会有失真。一般说来,可以把量化误差的幅度概率分布看成在-Δ/2~+Δ/2之间的均匀分布。可以证明,量化失真功率�,即与最小量化间隔的平方成正比。最小量化间隔越小,失真就越小。最小量化间隔越小,用来表示一定幅度的模拟信号时所需要的量化级数就越多,因此处理和传输就越复杂。所以,量化既要尽量减少量化级数,又要使量化失真看不出来。一般都用一个二进制数来表示某一量化级数,经过传输在接收端再按照这个二进制数来恢复原信号的幅值。所谓量化比特数是指要区分所有量化级所需几位二进制数。例如,有8个量化级,那么可用三位二进制数来区分,因为,称8个量化级的量化为3比特量化。8比特量化则是指共有个量化级的量化。�
量化误差与噪声是有本质的区别的。因为任一时刻的量化误差是可以从输入信号求出,而噪声与信号之间就没有这种关系。可以证明,量化误差是高阶非线性失真的产物。但量化失真在信号中的表现类似于噪声,也有很宽的频谱,所以也被称为量化噪声并用信噪比来衡量。�
上面所述的采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。这种非均匀量化级的安排称为非均匀量化或非线性量化。数字电视信号大多采用非均匀量化方式,这是由于模拟视频信号要经过校正,而校正类似于非线性量化特性,可减轻小信号时误差的影响。�
对于音频信号的非均匀量化也是采用压缩、扩张的方法,即在发送端对输入的信号进行压缩处理再均匀量化,在接收端再进行相应的扩张处理。��
目前国际上普遍采用容易实现的A律13折线压扩特性和μ律15折线的压扩特性。我国规定采用A律13折线压扩特性。�
采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。�
编码�
抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。最简单的编码方式是二进制编码。具体说来,就是用n比特二进制码来表示已经量化了的样值,每个二进制数对应一个量化值,然后把它们排列,得到由二值脉冲组成的数字信息流,整个过程见图2-7。编码过程在接收端,可以按所收到的信息重新组成原来的样值,再经过低通滤波器恢复原信号。用这样方式组成的脉冲串的频率等于抽样频率与量化比特数的积,称为所传输数字信号的数码率。显然,抽样频率越高,量化比特数越大,数码率就越高,所需要的传输带宽就越宽。��
除了上述的自然二进制码,还有其他形式的二进制码,如格雷码和折叠二进制码等,表2-1示出了这三种二进制码。这三种码各有优缺点:(1)自然二进制码和二进制数一一对应,简单易行,它是权重码,每一位都有确定的大小,从最高位到最低位依次为,可以直接进行大小比较和算术运算。自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。(2)格雷码则没有这一缺点,它在相邻电平间转换时,只有一位生变化,格雷码不是权重码,每一位码没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成模拟信号,要经过一次码变换,变成自然二进制码。(3)折叠二进制码沿中心电平上下对称,适于表示正负对称的双极性信号。它的最高位用来区分信号幅值的正负。折叠码的抗误码能力强。成系列ZL包括ZL1、ZL2、ZL3、ZL4、ZL5、ZL6和ZL7。ZL1是一款无人机系统,它是一种可自动飞行的无人机,可在原有的高度和速度上进行飞行,也可以调整飞行高度和速度,集成传感器和视觉模块,能够实现自动控制、定位和感知等功能,可以实现高精度航线规划、航点检查、精准定位和智能控制等。ZL2是一款海上无人机系统,它具有良好的航行稳定性,可以实现自动控制、定位和感知等功能,可以实现海洋环境的快速监测和跟踪,以及可携带货物的货运服务。ZL3是一款火箭发射系统,它可以实现火箭的控制、定位、发射和控制等功能,可以实现发射多种不同类型的火箭,以及进行高精度的发射优化和定位控制。ZL4是一款固定翼无人机系统,它具有高度的稳定性和高精度的控制能力,可以实现自动控制、定位和感知等功能,可以实现高精度航线规划、航点检查、精准定位和智能控制等。ZL5是一款高空无人机系统,可以实现自动控制、定位和感知等功能,可以在高空进行高精度的航线规划和飞行控制,也可以实现大范围的环境监测。ZL6是一款多旋翼无人机系统,可以实现自动控制、定位和感知等功能,可以实现高精度的航线规划、航点检查、精准定位和智能控制等。ZL7是一款网络无人机系统,可以实现自动控制、定位和感知等功能,可以实现大范围的环境监测和监控,可以搭建跨越多个无人机的网络。
量化信噪比公式:S/Nq=3×(2的2k次方)/(kcr的平方) (cr是下标)。其中kcr是波形因数,kcr=幅值/有效值(如正弦信号kcr=根号2)。码字位数 k bit/样本 = lb M。
由增量调制原理可知,译码器恢复的信号是阶梯形电压经过低通滤波器平滑后的解调电压。它与编码器输入模拟信号的波形近似,但是存在失真,将这种失真称为量化噪声。
扩展资料:
脉冲编码调制是20世纪70年代末发展起来的,记录媒体之一的CD,80年代初由飞利浦和索尼公司共同推出。脉码调制的音频格式也被DVD-A所采用,它支持立体声和51环绕声,1999年由DVD讨论会发布和推出的。
脉冲编码调制的比特数,从14-bit发展到16-bit、18-bit、20-bit直到24-bit;采样频率从441kHz发展到192kHz。
PCM脉码调制这项技术可以改善和提高的方面则越来越来小。只是简单的增加PCM脉码调制比特率和采样率,不能根本的改善它的根本问题。其原因是PCM的主要问题在于:
任何脉冲编码调制数字音频系统需要在其输入端设置急剧升降的滤波器,仅让20Hz-2205kHz的频率通过(高端2205kHz是由于CD441kHz的一半频率而确定)。
参考资料来源:百度百科-差分脉码调制
上网更舒服,网费嗖嗖嗖。
我觉得5G真的很酷,具体怎么酷呢,就是4G网络能做的所有事情5G多可以给你做完,而且还比你更优秀。我们国家5G技术现在领先美国,这也是让我非常骄傲的一点。不过5G的实现也是需要时间的,希望到时候可以实现全面覆盖。
我对5G不是很了解,感觉有点超出我的学习范围了,要说最大的改变,可能就是对于我这种爱玩游戏的人来说,AR或者VR都可以更带感吧。5G应该算是一场新的革命,我觉得它是可以改变媒体传播的方式的。
我感觉5G的出现可以让大数据变得更饱满吧。我们的生活会更加的便利。我真的是受够了排队办理事情,我希望可以快速的足不出户的完成一些列 *** 作。4G不行,5G应该是没问题的。
我前阵子还看到我家附近有那种无人驾驶车辆,我感觉蛮酷的,具体怎么 *** 作我也不懂,但是感觉应该以后有了5G网络之后无人车会更厉害一些吧。我感觉5G的改变就是改变过去低速率高延时的网络。
最后,想吐个槽,我希望5G全面推出的时候,网费可以便宜一点,我现在199块钱一个月的话费我都觉得有点贵,我希望5G可以真正的实现让老百姓获得更大的利益这一伟大的创举。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)