仅供参考认识太阳能电池
太阳能电池系一种利用太阳光直接发电的光电半导体薄片, 它只要一照到光, 瞬间就可输出电压及电流 而此种太阳能光电池 (Solar cell)简称为太阳能电池,或太阳电池(在台湾的早期翻译书籍上直接引用日文中的汉字,其实不是battery而是cell), 又可称为太阳能晶片 在中国大陆称为硅晶片,因为中文"硅"是 矽的古字, 矽为现代译音字 在物理学上称为 光生伏打(Photovoltaic),简称PV(photo=light光线,voltaics=electricity电力)
矽(silicon)为目前通用的太阳能电池之原料代表, 而在市场上又区分为: 1单结晶矽 2多结晶矽 3非结晶矽 而目 前市场应用上大多为单晶矽及非晶矽两大类, 原因是:一单晶效率最高 二非晶价格最便宜, 且无需封装, 生产也最快 三多晶的切割及下游再加工 较不易, 而前述两种都较易於再切割及加工
太阳能电池的发电能源来自於光的波长,太阳光是一种全域波长, 而白炽灯的波长与日光灯的波长不同, 太阳能电池以阳 光或白炽灯之波长为较适用, 而太阳能电子计算机上的太阳能电池是属於 "室内型的非晶" 如果长期拿到户外曝晒,且串并联为较大电压及电流时,将导致其内部连结组织烧断而损坏,这是过去有人因错用材料(以为太阳能电池只有一种), 却误以为所有的太阳能电池都不实用的原因
太阳能制造厂商将太阳能电池称为cell,国内业者则惯称晶片,把晶片(或依设计所需要的电流进行晶片切割后)焊上箔条导线再将许多焊好的晶片用箔条串联成一组,再和EVA,tedlar与低铁质强化玻璃层层叠叠,一同放入层压机(laminate)的机台上做真空封装, 制成module(plane / panel)称之为模组或称太阳能板,将若干太阳能板组成方阵(列阵array),接配上过充放保护控制(controller)及深(循环)放电蓄电池(铅钙) 以及逆转流器(inverter直流转变为交流)合称为太阳能电力系统,又称太阳能发电站
一般太阳能光电商品,其太阳能输出电流如果在300毫安(mA)以下时,都只会在太阳能板正极输出端,接装一个负载极微小的防逆二极体 (schottky diode消基二极体)以防止蓄电池内的电流逆流回到太阳能板,如此就可以接上蓄电池使用
太阳能板的规格除了外形尺寸之外,另有一些特性数据,其中 Voc=开路电压, Isc=短路电流, Vmp(Vop)=最大工作电压, Imp(Iop)= 最大工作电流, Vmp x Imp= W瓦 / (最大)功率在太阳能商品说明书上所看到的数据均以100mW / cm2(即无云晴天中午的照度12万LUX) 及摄氏温度25度,为测试条件(各地气候不同,一天中符合如此条件的机会很少)所以实际上的应用数据是达不到商品型录上所号称那麼高的
太阳能电池的功能系以其转换效率作为分等, 以单结晶矽来说: 商业级 (印刷式) 晶片从11%~15%, 特殊定制品从15%~17%, 太空级 (蒸镀式) 晶片从16%~24%, 当然效率愈高其价格就愈贵,较高效率的晶片要预付款排队订购但不一定买得到, 在澳洲1996年世界太阳能车竞赛前,Honda就将效率达24%的晶片全部契约买断,而21%~23%也被其他集团 高价包下,目前地面用太空级晶片只有效率17%~19%的晶片较有机会买得到,但要预约排到6~10个月之后
值得一提的是:经过几年来世界太阳能车3000公里竞赛的经验,发现唯有太空式晶片,才能经得起长途跋涉的颠簸震动(焊接点不易脱落),这就是以焊接来说:蒸镀式晶片与印刷式晶片在移动环境(车用)使用下的效果差异 换句话说:固定式(静止)的太阳能电池 模组,可以采用较便宜的印刷式晶片 但以当今现有的焊接科技而言,在移动(震动)的环境下使用太阳能电池时,目前还是以太空级(蒸镀式)的太阳能电池较为可靠
贰 单晶太阳能电池的生产介绍
拉晶:主原料为二氧化矽, 在拉晶炉中成长成晶柱
修角:早期制造太阳能电池的晶柱因无修角, 直接将圆晶柱切片, 所以成品为圆形晶片 现在大多先将晶柱修角成近似四方柱形
切片:用切片机将修成近似四方柱形的晶柱, 一片片的切成薄片(像切 方形火腿片),一般切到约04~05mm的厚度
刻蚀:化学刻蚀及抛光成为03mm的薄片(wafer)
清洗:用纯水将薄片洗净
扩散及银浆印刷:经由扩散炉处理后,制成N型上层及P型下层, 再将晶片表面及背面分别用银 浆印刷成输出电路, 一般表面为负极, 背面为正极, 经由摹拟阳光仪作功率检测及品管分级后,即为商业成品
蒸镀:如将表面及背面不经过丝网印刷, 而改采光刻及坩锅蒸镀式制造抗反射层与表面的输出导线, 再加上其他特殊技术, 如此可提高太阳能电池的转换效率 但坩锅的容纳有限生产量较少, 蒸镀耗时生产速度较慢, 其成本及售价将提高许多; 太空式单晶片即采用此法 (制造常规商业级的薄片电阻约05 ~3欧姆,有些太空式的薄片电阻需低於001欧姆以下---马丁格林电池E~24%,澳洲)
参 三种市场上流通的太阳能电池
单结晶矽太阳电池
SINGLECRYSTAL
多结晶矽太阳电池
POLYCRYSTAL
非结晶矽太阳电池
AMORPHOUS
目前,在美国的一位华裔李姓科学家,采用 铜铟亚盐酸(copper indium diselenide)制成新的太阳能电池, 其转换效率与结晶矽太阳能电池相当,而价格与重量却下降了许多(但是,距上市可能还要一段时间)
另外,德国 ISE 以矽粉制成较低价的:"结晶薄膜太阳能电池"
商业市场的明日之星
单晶薄膜太阳能电池 太阳能电池实用化的最重要的问题,就是要开发出性能与价格比"能更高的晶片",实际上太阳能电池成份中参与光电转换的,仅是半导体表面上几微米的薄薄一层。目前科学家们已经能成功的利用外延生长技术制成p-n结合,与传统晶片材料中的p-n结合相比,面积减少了很多倍。用此种p-n结合制作积体电路时可大量减小寄生电容与基片和布线间的电容,较利於高速化,又组件之间的间隔减少,也利於高密度化,组件之间没有相互影响,更便於设计和布置。有了这些特点更加符合大型积体电路的高速度、与高密度的要求。
目前最常用也是最成功的制成技术,是采用热分解SiH4气体的气相沈积法,在蓝宝石上沈积得到单晶矽薄膜,拜研究IC业界努力之赐,单晶薄膜太阳能电池搭此便车,将会加快商品化,及早问世太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。
制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。
一、硅太阳能电池
1.硅太阳能电池工作原理与结构
太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下:
图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。
当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图:
图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。
同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。的为磷原子核,红色的为多余的电子。如下图。
N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。
当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。
当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示)
由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结(如图 梳状电极),以增加入射光的面积。
另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用。为此,科学家们给它涂上了一层反射系数非常小的保护膜(如图),将反射损失减小到5%甚至更小。一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使用,形成太阳能光电板。
2.硅太阳能电池的生产流程
通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。
上述方法实际消耗的硅材料更多。为了节省材料,目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。
化学气相沉积主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用 LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。
三、纳米晶化学太阳能电池
在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但由于成本居高不下,远不能满足大规模推广应用的要求。为此,人们一直不断在工艺、新材料、电池薄膜化等方面进行探索,而这当中新近发展的纳米TiO2晶体化学能太阳能电池受到国内外科学家的重视。
以染料敏化纳米晶体太阳能电池(DSSCs)为例,这种电池主要包括镀有透明导电膜的玻璃基底,染料敏化的半导体材料、对电极以及电解质等几部分。
阳极:染料敏化半导体薄膜(TiO2膜)
阴极:镀铂的导电玻璃
电解质:I3-/I-
如图所示,白色小球表示TiO2,红色小球表示染料分子。染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO2导带中的电于最终进入导电膜,然后通过外回路产生光电流。
纳米晶TiO2太阳能电池的优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。但由于此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场。
四、染料敏化TiO2太阳能电池的手工制作
1制作二氧化钛膜
(1)先把二氧化钛粉末放入研钵中与粘合剂进行研磨
(2)接着用玻璃棒缓慢地在导电玻璃上进行涂膜
(3)把二氧化钛膜放入酒精灯下烧结10~15分钟,然后冷却
2利用天然染料为二氧化钛着色
如图所示,把新鲜的或冰冻的黑梅、山梅、石榴籽或红茶,加一汤匙的水并进行挤压,然后把二氧化钛膜放进去进行着色,大约需要5分钟,直到膜层变成深紫色,如果膜层两面着色的不均匀,可以再放进去浸泡5分钟,然后用乙醇冲洗,并用柔软的纸轻轻地擦干。
3制作正电极
由染料着色的TiO2为电子流出的一极(即负极)。正电极可由导电玻璃的导电面(涂有导电的SnO2膜层)构成,利用一个简单的万用表就可以判断玻璃的那一面是可以导电的,利用手指也可以做出判断,导电面较为粗糙。如图所示,把非导电面标上‘+’,然后用铅笔在导电面上均匀地涂上一层石墨。
4加入电解质
利用含碘离子的溶液作为太阳能电池的电解质,它主要用于还原和再生染料。如图所示,在二氧化钛膜表面上滴加一到两滴电解质即可。
5组装电池
把着色后的二氧化钛膜面朝上放在桌上,在膜上面滴一到两滴含碘和碘离子的电解质,然后把正电极的导电面朝下压在二氧化钛膜上。把两片玻璃稍微错开,用两个夹子把电池夹住,两片玻璃暴露在外面的部分用以连接导线。这样,你的太阳能电池就做成了。
6电池的测试
在室外太阳光下,检测你的太阳能电池是否可以产生电流。
原理:
太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,光生空穴流向p区,光生电子流向n区,接通电路后就产生电流。这就是光电效应太阳能电池的工作原理。
太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。
光—热—电转换:
光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。
前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样。太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。
一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。
光—电直接转换:
太阳能电池发电是根据特定材料的光电性质制成的。黑体(如太阳)辐射出不同波长(对应于不同频率)的电磁波, 如红外线、紫外线、可见光等等。
当这些射线照射在不同导体或半导体上,光子与导体或半导体中的自由电子作用产生电流。射线的波长越短,频率越高,所具有的能量就越高,例如紫外线所具有的能量要远远高于红外线。
但是并非所有波长的射线的能量都能转化为电能,值得注意的是光电效应于射线的强度大小无关,只有频率达到或超越可产生光电效应的阈值时,电流才能产生。
能够使半导体产生光电效应的光的最大波长同该半导体的禁带宽度相关,譬如晶体硅的禁带宽度在室温下约为1155eV,因此必须波长小于1100nm的光线才可以使晶体硅产生光电效应。
太阳电池发电是一种可再生的环保发电方式,发电过程中不会产生二氧化碳等温室气体,不会对环境造成污染。按照制作材料分为硅基半导体电池、CdTe薄膜电池、CIGS薄膜电池、染料敏化薄膜电池、有机材料电池等。
其中硅电池又分为单晶电池、多晶电池和无定形硅薄膜电池等。对于太阳电池来说最重要的参数是转换效率,在实验室所研发的硅基太阳能电池中,单晶硅电池效率为250%,多晶硅电池效率为204%,CIGS薄膜电池效率达196%,CdTe薄膜电池效率达167%,非晶硅(无定形硅)薄膜电池的效率为101%
太阳电池是一种可以将能量转换的光电元件,其基本构造是运用P型与N型半导体接合而成的。半导体最基本的材料是“硅”,它是不导电的,但如果在半导体中掺入不同的杂质,就可以做成P型与N型半导体,再利用P型半导体有个空穴(P型半导体少了一个带负电荷的电子,可视为多了一个正电荷)。
与N型半导体多了一个自由电子的电位差来产生电流,所以当太阳光照射时,光能将硅原子中的电子激发出来,而产生电子和空穴的对流,这些电子和空穴均会受到内建电位的影响,分别被N型及P型半导体吸引,而聚集在两端。此时外部如果用电极连接起来,形成一个回路,这就是太阳电池发电的原理。
简单的说,太阳光电的发电原理,是利用太阳电池吸收04μm~11μm波长(针对硅晶)的太阳光,将光能直接转变成电能输出的一种发电方式。
扩展资料:
太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电环保电池的伏安特性三个基本特性。具体解释如下
1、太阳能电池的极性
硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。
2、太阳电池的性能参数
太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。
3 太阳能电池的伏安特性
P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。
当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,小于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。
参考资料:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)