这个问题我来回答一下吧,关于物联网如何打造智慧城市的问题,物联网可以联系到整个城市的方方面面,可以进行统一规划管理,集中决策,进行自动规划,所以叫做智慧城市,具体主要包括就是交通调度、城市各种数据检测、安全监管、应急处置、物流管理、政府工作、医疗卫生、消防环保、智慧园区和教育等等,接下来详细阐述。
整个智慧城市里面最重要的可能就是智慧交通,城市越来越大,车辆人口越来越多,拥挤堵车是常态,所以智慧城市的第一步就是要打造实时自动调度的交通系统,能够对交通复杂区域进行合理规划,在高峰时期合理调度车辆和路线,这就需要对全市的车辆进行登记,安装物联网设备,同时,对整个城市主要交通节点进行检测和车流量分析,反馈给决策系统做出调度决策,保证整个城市是交通调度。
第二个方面就是城市各项参数检测监管,包括温度湿度,气压,各种污染物,以及天气预警,实现整个城市的各项参数可视化,在各大主要区域进行展示,参数异常就进行预警派人处理。这里面同样包括消防,对整个城市是建筑进行监测,安装各种物联网系统,实时检测分析,出现问题能够讲预警信息直接传输到所有相关部门,进行应急处理。接着就是智慧应急处理,那就是城市在紧急时候进行全城管理,为紧急事件让步,这就需要政府的数字化办公,能够及时的收到应急事件并启动统一管理。
大城市有一个问题就是流动人口多,不好进行管理,智慧城市在物联网时代应该借助物联网系统对流动人口加强监测,主要就是开发物联网设备,在主要路口进行人员跟踪识别,信息录入数据库,并进行大数据比对,可以对高危人群进行监测,需要的时候可以利用这个信息。这个不仅仅是智慧城市的一部分,更是智慧园区、社区的一部分。在教育方面,大家都知道教育资源发布是极其不均衡的,在物联网时代,借助5G高速低延迟的特点,可以借助智慧教育系统,实现优质教育资源全城共享,促进公平公正的教育事业。主要技术就是物联网、云计算和大数据分析,涉及到传感器网络布局、数据传输、调度算法、决策算法等等方面。
简述Inter,物联网,云端计算之间的区别以及联络 因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。
人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。
云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。
物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。
随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。
基于大资料与物联网,云端计算之间的关系
物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。
因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。
云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。
1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。
物联网在当今社会有着巨大的意义和作用,曾被誉为经济发展和国家安全的关键所在。下面是我精心推荐的物联网应用技术论文,希望你能有所感触!
物联网应用技术论文一:浅析物联网应用技术摘 要近几年来物联网技术受到了人们的广泛关注。本文介绍了物联网技术的研究背景,传感网的原理、应用、技术,无锡是首个国家传感网信息中心。以最具代表性的基于RFID的物联网应用架构、基于传感网络的物联网应用架构、基于M2M的物联网应用架构为例,对物联网的网络体系与服务体系进行了阐述;分析了物联网研究中的关键技术,包括RFID技术、传感器网络与检测技术、智能技术和纳米技术;最后,展望了无锡物联网技术作为国家首个传感网信息中心对人类生活、工业发展、科技进步的促进作用。
关键词物联网;技术;应用
尽管物联网技术在国外以成熟,但国内物联网才刚刚起步,问题显然很明显。那就是物联网安全,物联网是一种虚拟网络与现实世界实时交互的新型系统,其无处不在的数据感知以无线为主的信息传输、智能化的信息处理,一方面固然有利于提高社会效率,另一方面也会引起大众对信息安全和隐私保护问题的关注。从技术上讲物联网存在很多网络安全隐患。由于物联网在很多场合都需要无线传输,这种暴露在公开场所之中的信号很容易被窃取,也更容易被干扰,这将直接影响到物联网体系的安全。物联网规模很大,与人类社会的联系十分紧密,一旦受到病毒攻击,很可能出现世界范围内的工厂停产、商店停业、交通瘫痪,让人类社会陷入一片混乱。
1物联网的定义
作为一个新兴产业,物联网从诞生到广泛应用需要经历四个阶段。第一阶段为设想阶段,是产业发展的最初时期;第二阶段是技术研发阶段;第三阶段为实验阶段。在技术研发的水平达到一定程度时,就可以进行小范围的试用和检测,这是从理论走向实践的一步。国内的研究也在同步前行,如中国移动、电信和联通三大电信运营商业开始尝试物联网业务。中国移动的手机钱包和手机购电业务,该业务也可以应用于超市、餐厅等小额支付场合;中国联通的无线环保检测平台通过3G网络,可实现对水表、灌溉、水文等动态数据进行检测,又可对空气质量、碳排放和噪音进行检测;第四阶段为全国推广阶段,也是投入资金最大的时期。同时,一旦大规模商用,大量基础设施的建设和终端产品的全面推广必将推动电信、信息存储处理、IT服务整体解决方案等众多市场的发展。
2物联网的发展趋势
业内专家认为,物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。物联网的发展是以移动技术为代表的普适计算和泛在网络发展的结果,带动的不仅仅是技术进步,而是通过应用创新进一步带动经济社会形态、创新形态的变革,塑造了知识社会的流体特性,推动面向知识社会的下一代创新。开放创新、共同创新、大众创新、用户创新成为知识社会环境下的创新新特征,技术更加展现其以人为本的一面,以人为本的创新随着物联网技术的发展成为现实。要真正建立一个有效的物联网,有两个重要因素。一是规模性,只有具备了规模,才能使物品的智能发挥作用。二是流动性,物品通常都不是静止的,而是处于运动的状态,必须保持物品在运动状态,甚至高速运动状态下都能随时实现对话。
3物联网应用技术的隐私问题
在物联网中,射频识别技术是一个很重要的技术。在射频识别系统中,标签有可能预先被嵌入任何物品中,比如人们的日常生活物品中,但由于该物品(比如衣物)的拥有者,不一定能够觉察该物品预先已嵌入有电子标签以及自身可能不受控制地被扫描、定位和追踪,这势必会使个人的隐私问题受到侵犯。因此,如何确保标签物的拥有者个人隐私不受侵犯便成为射频识别技术以至物联网推广的关键问题。而且,这不仅仅是一个技术问题,还涉及到政治和法律问题。这个问题必须引起高度重视并从技术上和法律上予以解决。造成侵犯个人隐私问题的关键在于射频识别标签的基本功能:任意一个标签的标识(ID)或识别码都能在远程被任意的扫描,且标签自动地,不加区别地回应阅读器的指令并将其所存储的信息传输给阅读器。这一特性可用来追踪和定位某个特定用户或物品,从而获得相关的隐私信息。这就带来了如何确保嵌入有标签的物品的持有者个人隐私不受侵犯的问题。
4物联网应用的关键领域
41 RFID
射频识别即RFID(Radio Frequency Identification)技术,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签, *** 作快捷方便。RFID是一种简单的无线系统,只有基本器件,该系统用于控制、检测和跟踪物体。系统由一个询问器(或阅读器)和很多应答器(或标签)组成。
42传感网
传感网是随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的 无线网络 。借助于节点中内置的传感器测量周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大 小、速度和方向等物质现象。
43 M2M技术
M2M是Machine-to-Machine/Man的简称,是一种以机器终端智能交互为核心的、网络化的应用与服务。M2M根据其应用服务对象可以分为个人、家庭、行业三大类。通信 网络技术 的出现和发展,给社会生活面貌带来了极大的变化。人与人之间可以更加快捷地沟通,信息的交流更顺畅。但是目前仅仅是计算机和其他一些IT类设备具备这种通信和网络能力。众多的普通机器设备几乎不具备联网和通信能力,如家电、车辆、自动售货机、工厂设备等。M2M技术的目标就是使所有机器设备都具备连网和通信能力,其核心理念就是网络一切(Network Everything)。M2M技术具有非常重要的意义,有着广阔的市场和应用,推动着社会生产和生活方式新一轮的变革。M2M是一种理念,也是所有增强机器设备通信和网络能力的技术的总称。人与人之间的沟通很多也是通过机器实现的,例如通过手机、电话、电脑、传真机等机器设备之间的通信来实现人与人之间的沟通。另外一类技术是专为机器和机器建立通信而设计的。如许多智能化仪器仪表都带有RS-232接口和GPIB通信接口,增强了仪器与仪器之间,仪器与电脑之间的通信能力。目前,绝大多数的机器和传感器不具备本地或者远程的通信和连网能力。
44两化融合
两化融合是信息化和工业化的高层次的深度结合,是指以信息化带动工业化、以工业化促进信息化,走新型工业化道路;两化融合的核心就是信息化支撑,追求可持续发展模式。 在中国第十六次全国代表大会上,江泽民同志率先提出了“以信息化带动工业化,以工业化促进信息化”的新型工业化道路的指导思想;经过5年的发展和完善,在中国第十七次全国代表大会上胡锦涛同志继续完善了“发展现代产业体系,大力推进信息化与工业化融合”的新科学发展的观念,两化融合的概念就此形成。
5结语
根据物联网的内涵可知,要真正实现物联网需要感知、传输、控制及智能等多项技术。物联网的研究将带动整个产业链或者说推动产业链的共同发展。信息感知技术、网络通信技术、数据融合与智能技术、云计算等技术的研究与应用,将直接影响物联网的发展与应用,只有综合研究解决了这些关键技术问题,物联网才能得到快速推广,造福于人类社会,实现智慧地球的美好愿望。
参考文献
[1]刘化君物联网体系结构研究[J]中国新通信,2010,5
[2]陆光耀物流信息管理[M]北京:中国铁道出版社,2008
[3]肖慧彬物联网中企业信息交互中间件技术开发研究北京:北方工业大学,2009
点击下页还有更多>>>物联网应用技术论文
物联网时代的大数据策略
互联网时代,PC、Pad、智能手机等设备无处不在,数以亿计的用户通过微博、微信、SNS、博客等途径产生大量的自媒体数据,电商、新闻类网站、搜索引擎每时每刻都在记录着丰富的用户行为信息,海量的数据促进了云计算,分布式技术的发展,而这些技术反过来不仅推动了Web和移动互联网的革新,也推动了物联网的飞速前进。现在,我们正逐渐迈入物联网时代,实现万物互联的愿景,如果说之前人是信息生产的主体,那么或许不久的将来设备将成为主角,它们将源源不断地产生与人相关的衣食住行信息,这些信息会通过云计算、数据挖掘等技术实现价值的升华从而为用户提供更优质、贴心的服务。那么物联网时代会产生什么样的数据,应该采用什么样的大数据策略呢?
THINKstrategies 的总经理 Jeff Kaplan 在自己的博文《 当物联网遇见大数据 》中写道:
“你不能使用现在的策略,因为可以被捕获、管理并利用的数据将更加多样化,同时用例也会更加丰富。附加到各种设备和对象上的传感器会产生各种类型的数据。这些数据将会用于各种响应式的、主动的或者 创造性的目的 。IT部门的任务就是与业务部门一起工作,完全理解物联网方面的用例,然后寻找满足业务需求的技术。特别是,IT部门必须识别出最优的分析平台和工具,让业务用户能够获取到需要的数据,分析数据的含义并快速地做出响应。”
Gartner公司的副总裁、著名分析师 Joe Skorupa 认为:
“分布在世界各地的物联网设备将产生大量的输入数据,将所有的数据传送到一个位置进行处理无论从技术上还是从经济上都是无法实现的。最近的趋势——将应用程序集中起来以便于降低成本并增强安全性——并不适合物联网。组织必须将数据集中到多个分布式的小型数据中心中,在此对数据进行初步的处理并发送到一个中心站点进行额外的处理。数据中心管理员需要在这些区域部署更加具有前瞻性的容量以满足业务发展的需要。”
Patrick McFadin则在自己的博文《 物联网:数据都去了哪里? 》中阐述了一个具体的数据策略解决方案。他认为整个过程可以分为三个阶段:产生数据并通过Internet传递、中央系统收集并组织数据、持续的数据分析与使用。
第一阶段需要决定数据创建的标准以及如何通过网络进行传递。Patrick McFadin认为可以通过>
以上是小编为大家分享的关于物联网时代的大数据策略的相关内容,更多信息可以关注环球青藤分享更多干货
物联网分为的三层分别是网络层、应用层、感知层:
1、网络层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。
2、应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。
3、感知层由各种传感器以及传感器网关构成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。
物联网相关技术
1、地址资源
物联网的实现需要给每个物体分配唯一的标识或地址。最早的可定址性想法是基于RFID标签和电子产品唯一编码来实现的。
另一个来自语义网的想法是,用现有的命名协议,如统一资源标志符来访问所有物品(不仅限于电子产品,智能设备和带有RFID标签的物品)。这些物品本身不能交谈,但通过这种方式它们可以被其他节点访问,例如一个强大的中央服务器。
2、人工智能
自主控制也并不依赖于网络架构。但目前的研究趋势是将自主控制和物联网结合在一起在未来物联网可能是一个非决定性的、开放的网络,其中自组织的或智能的实体和虚拟物品能够和环境交互并基于它们各自的目的自主运行。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)