嵌入式培养类似于定向培养,是bai一种专门针对高考学生的培养方式,立足于培养嵌入式系统相关的人才,为国家相关机构作出巨大贡献的学生,这也是国家任务计划招生的一部分。而经过嵌入式培养的学生毕业后必须按照培养方案,到特定的地区、单位和部门工作。
这个专业旨在培养德、智、体、美、劳全面发展,具有良好的综合素质、良好的职业道德、扎实的专业基础、较强的专业技能及外语综合运用能力,掌握计算机、通信、电子等与物联网相关的基本理论、基本知识、基本技能和基本方法;
掌握无线传感器网络、射频识别(RFID)等相关知识与技术,能适应未来物联网工程及相关产业发展需要、能较好地服务地方社会经济发展、具有一定创新意识和创新能力的高级应用型工程技术人才。
扩展资料:
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。
在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;
在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。
参考资料来源:常熟理工学院官网-计算机科学与工程学院简介
参考资料来源:百度百科-嵌入式培养
我们在了解人工智能技术的时候,对于深度学习的概念进行了一次普及,今天我们就一起来学习一下深度学习对于物联网的发展都有哪些影响作用。下面昌平电脑培训就开始今天的主要内容吧。
技术
在物联网时代,大量的感知器每天都在收集并产生着涉及各个领域的数据。由于商业和生活质量提升方面的诉求,应用物联网(IoT)技术对大数据流进行分析是十分有价值的研究方向。这篇论文对于使用深度学习来改进IoT领域的数据分析和学习方法进行了详细的综述。从机器学习视角,作者将处理IoT数据的方法分为IoT大数据分析和IoT流数据分析。论文对目前不同的深度学习方法进行了总结,并详细讨论了使用深度学习方法对IoT数据进行分析的优势,以及未来面临的挑战。
在本系列文章中,已介绍了深度学习和长短期记忆(LSTM)网络,展示了如何生成用于异常检测的数据,还介绍了如何使用Deeplearning4j工具包。本篇文章中,将介绍开源机器学习系统ApacheSystemML如何通过动态地优化执行并利用ApacheSpark作为运行时引擎,帮助执行线性代数运算。并展示了在时序传感器数据(或任何类型的一般序列数据)上,即使非常简单的单层LSTM网络的性能也优于先进的异常检测算法。
GoogleAssistant和其他自然语言理解平台正在推动用户如何使用他们的技术。无论是执行器诸如设置计时器之类的简单任务,还是进行更复杂的任务(例如Google智能助理调整恒温器),您都可以参与其中。在这篇文章中,逐步介绍了如何构建自己的助手应用程序,通过简单地要求Google来控制AndroidThings设备来浇灌植物。
开源
tinyweb是一个用于在运行有MicroPython的ESP8266/ESP32等微型设备之上的简单轻便的>
Mynewt是一款适用于微型嵌入式设备的组件化开源 *** 作系统。ApacheMynewt使用Newt构建和包管理系统,它允许开发者仅选择所需的组件来构建 *** 作系统。其目标是使功耗和成本成为驱动因素的微控制器环境的应用开发变得容易。Mynewt提供开源蓝牙50协议栈和嵌入式中间件、闪存文件系统、网络堆栈、引导程序、FATFS、引导程序、统计和记录基础设施等的支持。
AngularIotDashboard是一个基于Angular4的物联网领域的仪表板。它是一个适用于任何浏览器的实时兼容仪表板,其目标是成为智能家居,智能办公室和工业自动化的d性前端。拥有许多可重用组件,开发者可以基于AngularIoTDashboard启发和实施自己版本的托管物联网仪表板。
硬件
FemtoUSB是一个基于Atmel的ARMCortexM0+产品ATSAMD21E18A的开源ARM开发板。其被设计成对那些对ARM设计感兴趣的人的基础起点,特别那些准备从AVR8位硬件转换到功能非常强大的ARM32位工具。其从电路板设计,原理图和零件清单完全是开源的,可以让开发者学习设计ARM芯片、编译工具链、ARM芯片的基本的电路图等等的内容。
大数据与云计算应该怎么学?学习大数据必须掌握的技术
Hadoop
高效、可靠、可伸缩的Hadoop——能够为你的数据存储项目提供所需的YARN、HDFS和基础架构,并且运行主要的大数据服务和应用程序。hadoop擅长日志分析,facebook就用Hive来进行日志分析。
Hive
Hive是建立在Hadoop上的数据仓库基础构架。hive的工作模式是:提交一个任务,等到任务结束时被通知,而不是实时查询。相对应的是,类似于Oracle这样的系统当运行于小数据集的时候,响应非常快。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL)——这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。
难易程度分析:
Spark
Spark使用简单,而且可以支持所有重要的大数据语言,如Scala、Python、Java、R等。同时,它还拥有强大的生态系统,且成长迅速,对microbatching/batching/SQL的支持也很简单。最重要的是,Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Python
Python的特点是面向对象的解释性的脚本语言,支持多态、继承等高级概念,在Python里使用OOP十分容易 没有C++、Java那样复杂。Python的使用是完全免费的,同时对用户的提问提出快速的支持。
大数据的基础知识,科普类的,自己去买本书就行了,大数据时代这样的书很多介绍的大数据的。
另外大数据的技术,如数据采集,数据存取,基础架构,数据处理,统计分析,数据挖掘,模型预测,结果呈现。
当然一些大数据的一些基础知识,比如java和hadoop等等,这个基本得自学。大学里面最接近这些的也就是计算机类专业。
云计算的话,需要学习的知识应该包括但不限于:1、网络通信知识,包括互联网基础建设相关的所有知识;2、虚拟化知识,应该了解硬件运行原理以及虚拟化实现技术;3、数据库技术;4、网络存储技术;5、网络信息安全技术,最起码得明白什么是iso 17799;6、电子商务;7、容灾及备份技术;8、JAVA编程技术;9、分布式软件系统架构。。。
云计算大数据培训这一块的话,只有两种方式可以去学习,其中一种是自学,那么自学的话,自己要给自己编一个大纲和一个进程,也就意味着自己要学什么学什么内容,以及未来的就业方向,要比较明白和清楚。第二种就是通过相关的培训机构去学习相关的云计算和大数据之间的关联,那么他们是有一个老师,也就是导师,在前面引导着你去学习哪些内容?最终可能会推荐你去就业,或者是满足你想要学习的内容。
云计算,大数据怎么区分?云计算是基于it基础设施的交付和使用模式,大数据就是利用大数据应用与分析,大数据是在云计算的基础上运用
如何结合大数据与云计算 由云计算提供的d性和按需配置,为让企业组织能够试验和尝试解决大数据的新方法提供了核心力量。
企业可以根据供应的基础设施,用不同的迭代方式尝试和 *** 纵他们的数据。基础设施不再限制用什么来处理数据。这些相同的灵活性使企业即使有高可变负载的情况下也不会超支。
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
首先,云计算的崛起牵动了大数据的发展,资源整合,高效利用,推动社会发展是他们的价值,早在2006年谷歌就提出了大数据的概念。
云计算与大数据谁是胜者都有发展之道,都有潜力,要说谁是胜者还是拭目以待!
云计算 物联网 大数据1、云计算
一般来讲云计算,云端即是网络资源,从云端来按需获取所需要的服务内容就是云计算。云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。广义的云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务。
2、物联网
简单理解:物物相连的互联网,即物联网。物联网在国际上又称为传感网,这是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。世界上的万事万物,小到手表、钥匙,大到汽车、楼房,只要嵌入一个微型感应芯片,把它变得智能化,这个物体就可以“自动开口说话”。再借助无线网络技术,人们就可以和物体“对话”,物体和物体之间也能“交流”,这就是物联网。随着信息技术的发展,物联网行业应用版图不断增长。如:智能交通、环境保护、 工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源等。大的理想就是智慧地球,目前实际生活中存在并在建设的智慧城市都是物联网炒的概念。
3、大数据
大数据(big data),就是指种类多、流量大、容量大、价值高、处理和分析速度快的真实数据汇聚的产物。大数据或称巨量资料或海量数据资源,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume、Velocity、Variety、Veracity。
即:数量Volume、多样性Variety、速度Velocity、和真实性Veracity。
4、大数据,云计算,物联网和移动互联网的关系
物联网对应了互联网的感觉和运动神经系统。云计算是互联网的核心硬件层和核心软件层的集合,也是互联网中枢神经系统萌芽。大数据代表了互联网的信息层(数据海洋),是互联网智慧和意识产生的基础。包括物联网,传统互联网,移动互联网在源源不断的向互联网大数据层汇聚数据和接受数据。云计算与物联网推动大数据发展。
无所谓谁赢谁输,因为两者不是竞争者,而是相辅相成,现在云计算和大数据都很火,很成功。
python 云计算与大数据 工作强度大么一般吧,这个主要还是看公司,有的公司进度排的比较紧那就强度大点儿。
物联网工程师需要学习一下几个方面:
1、物联网产业与技术导论:全面了解物联网之RFID、M2M、传感网、两化融合等技术与应用。
2、C语言程序设计:物联网涉及底层编程,C语言为必修课,同时需要了解OSGi,OPC,Silverlight等技术标准。
3、单片机原理及应用:物联网的底层单片机及其相关应用技术,包括控制、多媒体等。
4、Java程序设计:物联网应用层,服务器端集成技术,开放Java培训技术也是必修课,同时需要了解Eclipse,SWT,Flash,HTML5等技术使用。
5、物联网工程概论:全面了解物联网基本知识、技术体系以及相关理论,对物联网的关键技术,如EPC和RFID技术、传感器技术、无线传感器网络技术、M2M技术等。同时应对与物联网密切相关的云计算、智能技术、安全技术也进行论述。
6、无线传感网络概论:学习各种无线RF通讯技术与标准,Zigbee,蓝牙,WiFi,GPRS,CDMA,3G,4G,5G等等。
7、TCP/IP网络与协议:TCP/IP以及OSI网络分层协议标准是所有有线和无线网络协议的基础,Socket编程技术也是基础技能。
8、嵌入式系统技术:嵌入式系统是物联网感知层和通讯层重要技术。
9、传感器技术概论:物联网专业学生需要对传感器技术与发展,尤其是在应用中如何选用有所了解,但不一定需要了解传感器的设计与生产,对相关的材料科学,生物技术等有深入了解。
10、RFID技术概论:RFID作为物联网主要技术之一,需要了解。
11、工业信息化及现场总线技术:工业信息化也是物联网主要应用领域,需要了解。
物联网软件、标准、与中间件技术:物联网产业发展的关键在于应用,软件是灵魂,中间件是产业化的基石,需要学习和了解。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)