物联网的应用层涉及哪些技术

物联网的应用层涉及哪些技术,第1张

物联网的应用层?!你确信你要了解的是应用层,不是感知层?
物联网层次结构分为三层,自下向上依次是:感知层、网络层、应用层。感知层是物联网的核心,是信息采集的关键部分。感知层位于物联网三层结构中的最底层,其功能为“感知”,即通过传感网络获取环境信息。感知层是物联网的核心,是信息采集的关键部分。
在感知层常见的关键技术如下:
l 传感器:传感器是物联网中获得信息的主要设备,它利用各种机制把被测量转换为电信号,然后由相应信号处理装置进行处理,并产生响应动作。常见的传感器包括温度、湿度、压力、光电传感器等。
2 RFID:RFID的全称为Radio Frequency Identification,即射频识别,又称为电子标签。RFID是一种非接触式的自动识别技术,可以通过无线电讯号识别特定目标并读写相关数据。它主要用来为物联网中的各物品建立唯一的身份标示。
3 传感器网络:传感器网络是一种由传感器节点组成网络,其中每个传感器节点都具有传感器、微处理器、以及通信单元。节点间通过通信网络组成传感器网络,共同协作来感知和采集环境或物体的准确信息。而无线传感器网络(Wireless Sensor Network,简称WSN),则是目前发展迅速,应用最广的传感器网络。
对于目前关注和应用较多的RFID网络来说,附着在设备上的RFID标签和用来识别RFID信息的扫描仪、感应器都属于物联网的感知层。在这一类物联网中被检测的信息就是RFID标签的内容,现在的电子(不停车),收费系统(Electronic Toll Collection,ETC)、超市仓储管理系统、飞机场的行李自动分类系统等都属于这一类结构的物联网应用。
希望 回答对你有帮助

目前公认的有三个:
1、感知层:感知层是物联网的皮肤和五官—识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS等。主要作用是识别物体,采集信息,与人体结构中皮肤和五官的作用相似。
2、网络层:网络层是物联网的神经中枢和大脑—信息传递和处理。网络层包括通信与互联网的融合网络、网络管理中心和信息处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。唯康教育,
3、应用层:应用层是物联网的“社会分工”—与行业需求结合,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,与行业需求结合,实现行业智能化,这类似于人的社会分工,最终构成人类社会!

物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网这一概念提出已有20多年,但受全球各国重视是2008年和2009年这两年,各国纷纷推出物联网相关政策,我国也开启了物联网发展里程碑的年份,列为国家五大新兴战略性产业之一。经过10年发展,物联网已不再是高高在上的概念,在云+AI等技术加持下,让物联网得到了广泛应用,产业发展迅猛,也迎来了黄金发展时代。
运营商、半导体厂商、通信设备、云服务商和应用端等形成物联网产业链,而NB-IoT和LoRa等LPWA低功耗广域网通信技术,解决物联网大规模部署连接等需求,继而使得物联网在工业、零售、物流和交通等垂直领域得到广泛应用。
在产业链积极推动下,物联网连接规模成倍速度增长,LPWAN连接的复合年增长率为109%。此外物联网高级顾问杨剑勇指出,5G技术部署,也将把物联网带上更高的层次,也让万物互联成为可能,其中运营商是万物互联积极推动者,全球运营商纷纷转型寄望于在大连接时代,不再局限做一个管道提供者,希望能抢夺物联网应用端市场,例如面向工业、教育、医疗、车联网和智慧家庭等应用场景寻求机遇。
物联网在移动监测、智能可穿戴、POS机、气象、医疗和能源等行业用途很大,而且是实现设备联网不可或缺的产品,不少相关的top域名都被注册。

物联网( IoT ,Internet of things )即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。

1、射频识别技术

射频识别技术(Radio Frequency Identification,简称RFID)。RFID是一种简单的无线系统,由一个询问器(或阅读器)和很多应答器(或标签)组成。标签由耦合元件及芯片组成,每个标签具有唯扩展词条一的电子编码。

标签附着在物体上标识目标对象,它通过天线将射频信息传递给阅读器,阅读器就是读取信息的设备。RFID技术让物品能够“开口说话”。这就赋予了物联网一个特性即可跟踪性。就是说人们可以随时掌握物品的准确位置及其周边环境。

2、传感网

MEMS是微机电系统( Micro - Electro - Mechanical Systems)的英文缩写。它是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。

其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。

3、M2M系统框架

M2M是Machine-to-Machine/Man的简称,是一种以机器终端智能交互为核心的、网络化的应用与服务。它将使对象实现智能化的控制。M2M技术涉及5个重要的技术部分:机器、M2M硬件、通信网络、中间件、应用。

基于云计算平台和智能网络,可以依据传感器网络获取的数据进行决策,改变对象的行为进行控制和反馈。

4、云计算

云计算旨在通过网络把多个成本相对较低的计算实体整 合成一个具有强大计算能力的完美系统,并借助先进的商业 模式让终端用户可以得到这些强大计算能力的服务。

如果将计算能力比作发电能力,那么从古老的单机发电模式转向现 代电厂集中供电的模式,就好比现在大家习惯的单机计算模 式转向云计算模式,而“云”就好比发电厂,具有单机所不能比拟的强大计算能力。

扩展资料:

物联网功能

1、获取信息的功能

主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。

2、传送信息的功能

主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。

3、处理信息的功能

是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。

4、施效信息的功能

指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态

参考资料来源:百度百科-物联网

物联网的技术体系框架祥泰电气认为包括感知层技术、网络层技术、应用层技术和公共技术:
1 感知层:数据采集与感知主要用于采集物理世界中发生的物理事件和数据,包括各类物理量、标识、音频、视频数据。物联网的数据采集涉及传感器、RFID、多媒体信息采集、二维码和实时定位等技术。传感器网络组网和协同信息处理技术实现传感器、RFID等数据采集技术所获取数据的短距离传输、自组织组网以及多个传感器对数据的协同信息处理过程。
2 网络层:实现更加广泛的互联功能,能够把感知到的信息无障碍、高可靠性、高安全性地进行传送,需要传感器网络与移动通信技术、互联网技术相融合。经过十余年的快速发展,移动通信、互联网等技术已比较成熟,基本能够满足物联网数据传输的需要。
3应用层:应用层主要包含应用支撑平台子层和应用服务子层。其中应用支撑平台子层用于支撑跨行业、跨应用、跨系统之间的信息协同、共享、互通的功能。应用服务子层包括智能交通、智能医疗、智能家居、智能物流、智能电力等行业应用。
4 公共技术:公共技术不属于物联网技术的某个特定层面,而是与物联网技术架构的三层都有关系,它包括标识与解析、安全技术、网络管理和服务质量(QoS)管理。

物联网技术涵盖感知层、网络层、平台层和应用层四个部分。

感知层的主要功能就是采集物理世界的数据,其是人类世界跟物理世界进行交流的关键桥梁。比如在智能喝水领域会采用一种流量传感器,只要用户喝水,流量传感器就会立即采集到本次的喝水量是多少,再比如小区的门禁卡,先将用户信息录入中央处理系统,然后用户每次进门的时候直接刷卡就行。(了解更多智慧人脸识别解决方案,欢迎咨询 汉玛智慧)

网络层主要功能就是传输信息,将感知层获得的数据传送至指定目的地。物联网中的“网”字其实包含了2个部分:接入网络、互联网。以前的互联网只是打通了人与人之间的信息交互,但是没有打通人与物或物与物之间的交互,因为物本身不具有联网能力。后来发展出将物连接入网的技术,我们称其为设备接入网,通过这一网络可以将物与互联网打通,实现人与物和物与物之间的信息交互,大大增加了信息互通的边界,更有利于通过大数据、云计算、AI智能等先进技术的应用来增加物理和人类世界的丰富度。

平台层可为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑数据上报至云端,向上提供云端API,服务端通过调用云端API将指令下发至设备端,实现远程控制。物联网平台主要包含设备接入、设备管理、安全管理、消息通信、监控运维以及数据应用等。

应用层是物联网的最终目的,其主要是将设备端收集来的数据进行处理,从而给不同的行业提供智能服务。目前物联网涉及的行业众多,比如电力、物流、环保、农业、工业、城市管理、家居生活等,但本质上采用的物联网服务类型主要包括物流监控、污染监控、智能交通、智能家居、手机钱包、高速公路不停车收费、远程抄表、智能检索等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10419659.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存