我国物联网发展现状及前景分析如何?

我国物联网发展现状及前景分析如何?,第1张

2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。

截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。

目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。

政策推动我国物联网高速发展

自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。

工业物联网无线数据采集系统,是一套基于信立 XLSN无线传感器网络技术的,具有终端数据采集,无线数据传输和数据应用分析等多功能的智能化数据采集和监控系统,它在市政供排水管网、供汽管网、热力管网、石油天然气管网、地下管沟监控;游泳池水箱水塔液位、大坝、河道水位、泵房浸水监控;蔬菜蘑菇、针金菇、水果、花卉、育苗等农业大棚智能环境监控;畜牧、家禽、水产等农业养殖智能环境监控;化工危化品石油天然气储罐区、电池、面粉仓库智能环境监控;电信机房、实验室、医院药房、生产车间、冷柜冰箱、图书馆、博物馆、档案室、粮库、烟草、酒糟酒曲酒窖等仓储馆藏智能环境监控;社区楼宇、港口工业园区、公园景区、校园广场、超市商场等大气环境质量智能监控;发动机、变频器等生产机器设备运行状态、仪器仪表能耗及生产缺料的智能监控等多个领域有着广泛的应用。
近年来,工业物联网无线数据采集系统的发展趋势是简化终端结构,在数据采集终端与主机之间采用无线通信,以代替复杂、不灵活的现场布线。该阶段数据采集系统采用更先进的模块式结构,根据不同的应用要求,通过简单的增加和更改模块,并结合系统编程,就可以扩展或修改系统,满足不同领域的需要。基于XLSN无线传感器网络24GHz或433MHz模块技术、MES制造执行系统技术及无线传感器、无线测控装置RTU等的智能制造工厂生产车间无线数据采集系统是工业物联网无线数据采集系统的典型应用案例。

现状:我国已形成基本齐全的物联网产业体系,部分领域已形成一定市场规模,网络通信相关技术和产业支持能力与国外差距相对较小,传感器、RFID等感知端制造产业、高端软件和集成服务与国外差距相对较大。仪器仪表、嵌入式系统、软件与集成服务等产业虽已有较大规模,但真正与物联网相关的设备和服务尚在起步。
我国已形成了较完整的敏感元件与传感器产业,产业规模稳步增长。我国形成了RFID低频和高频的完整产业链以及以京、沪、粤为主的空间布局,2009年市场规模达到85亿元并成为全球第3大市场。我国仪器仪表产业连续多年实现20%以上的增长,2009年产值超过5000亿元,企业数量为5000多个,小型企业数量占比达到90%。
在物联网网络通信服务业领域,我国物联网M2M网络服务保持高速增长势头,目前M2M 终端数已超过1000万,年均增长率超过80%,应用领域覆盖公共安全、城市管理、能源环保、交通运输、公共事业、农业服务、医疗卫生、教育文化、旅游等多个领域,未来几年仍将保持快速发展,预计“十二五”期间将突破亿级。三大电信企业在资源配置方面积极筹备,加紧建设M2M管理平台并推出终端通信协议标准,以推进M2M业务发展。国内通信模块厂商发展较为成熟,正依托现有优势向物联网领域扩展。国内M2M终端传感器及芯片厂商规模相对较小,处于起步阶段。尽管我国在物联网相关通信服务领域取得了不错的进展,但应在M2M通信网络技术、认知无线电和环境感知技术、传感器与通信集成终端、RFID与通信集成终端、物联网网关等方面提升服务能力和服务水平。
在物联网应用基础设施服务业领域,虽然不是所有云计算产业都可纳入物联网产业范畴,但云计算是物联网应用基础设施服务业中的重要组成部分,物联网的大规模应用也将大大推动云计算服务发展。国内云计算商业服务尚在起步,SaaS已形成一定规模,而真正具有云计算意义的IaaS和PaaS商业服务还未开展。目前,我国在云计算服务的基础设施(IDC 中心)建设、云计算软硬件产业支持和超大规模云计算服务的核心技术方面与发达国家存在差距。云安全方面,我国企业具有一定的特点和优势。随着物联网应用的规模推进、互联网快速发展和国家信息化进程的不断深入,我国云计算服务将形成巨大的市场需求空间,“十二五”期间将呈现快速发展态势。
在物联网相关信息处理与数据服务业领域,信息处理与数据分析的关键技术主要是数据库与商业智能。我国数据库产业非常薄弱,知名企业只有三四家,只占国内市场10%左右的份额。商业智能(BI)领域我国虽然技术相对落后,但已形成了一定规模,国内现有BI厂商有近500家,但高端市场仍由国际厂商垄断。整体而言,我国拥有自主知识产权的数据库产品、BI产品和掌握关键技术的软件企业少,产业链不完整,缺乏产品线完整、软硬结合、竞争力强的国际企业。
在物联网应用服务业领域,整体上我国物联网应用服务业尚未成形,已有物联网应用大多是各行业或企业的内部化服务,未形成社会化、商业化的服务业,外部化的物联网应用服务业还需一个较长时期的市场培育,并需突破成本、安全、行业壁垒等一系列制约。
综上所述,我国尚未形成真正意义的物联网产业形态和爆发点,物联网有形成巨大市场的潜力,但潜在空间转化为现实市场还需要较长时间培育,关键点是通过技术和应用创新形成新兴业态和新增市场。我们预计,“十二五”期末我国物联网相关产业规模将达到5000多亿元规模,而真正可能形成万亿元级规模的时间节点预计在“十三五”后期。
大势所趋: 一方面认为物联网技术目前并不能降低物流企业的经营成本,另一方面多位接受采访的人士认为物联网的发展是阻挡不住的。
物联网的出现不管你欢不欢迎,赞不赞成,这个趋势是阻挡不住的,就像当年的计算机互联网的出现,再比如近几年云计算的发展。”逄诗铭对记者说。
逄诗铭认为,目前中国物联网产业规模据他个人估计已达两三千亿,很快会上升为万亿规模,再过几年就会到五六万亿。
中国RFID产业联盟秘书长欧阳宇在接受记者采访时也认为,物联网是一个宽泛的概念,目前日常生活中已经广泛地应用到了物联网技术,比如说门禁、高速公路上的ETC系统、公交智能卡马上要推出的智能电表等,都是物联网技术的运用。而在物流行业中,仓储配送、集装箱监控、运输调配等多个环节都已经运用到了物联网技术。
“一个新技术的应用是逐步推进的,不应该纠缠于物联网技术到底是什么,更不能因为现在应用程度不高就否定这个新技术。”欧阳宇说。
逄诗铭认为,物联网技术现阶段虽然并不能降低实际运费,但是提高了整个供应链和物流管理的效率,从长远来看,必然会大面积应用到物流行业中。
“换一个角度来看物流成本。举个很简单的例子,传统物流中丢失了两个集装箱,给货主赔的钱这算不算成本?但是我们给集装箱装上电子封条,采用视频识别与监控技术进行全程的监控,这个货品就不可能丢失,即使丢失了也容易追索回来。”中国物流与采购联合会副会长戴定一说。
近日,铁道部部长盛光祖与交通运输部部长李盛霖在北京签署了《关于共同推进铁水联运发展合作协议》。
多名专家认为,铁道部和交通部共同推进铁水联运发展,将有效改进目前我国线性物流运输模式,促进铁路、公路、水路、航空的联网运输能力,提高运输效率和服务水平,从而降低物流成本。
而在多渠道联运这个信息平台的建设中,物联网技术的应用将是必不可少的手段。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10438061.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存