1、预测性维护预测性维护
预测性维护预测性维护一直是工业物联网最显著的作用之一,用过传感器对机器各部分温度、振动、耗电量等数据的监测,用户可以随时发现设备的异常,提前停产时间维护,避免意外停机影响生产。甚至用户可以通过模拟场景功能,通过易云系统内置或自行上传,搭建出相应的场景,将采集到的各类数据展示在场景中的相应位置,通过场景中数据和的变化,来随时监测设备状况。
2、自动控制一般传感器采集到的数据
自动控制一般传感器采集到的数据,往往需要在电脑或人机界面展示,工作人员观察数据状况后手工控制设备启停或升降功率。通过易云系统自带的逻辑控制功能,可以直接在设备和需要控制的设备之间架设逻辑,通过PLC、或其他控制方式,根据数据变化,自动调整设备运转状态,减少时间浪费。
3、挖掘数据内涵
挖掘数据内涵。传感器采集到的数据、设备反馈之后的数据最终都是要经过分析研究,成为对企业有利的信息,为企业提供决策支持。如对产品端的监测数据分析,找到机械的弱点或故障发生规律,在改进工艺时针对性加强,提升产品质量和竞争力等。模块的引脚图如下:
这个Wifi模块的主芯片Cortex-M3内核,288K的SRAM,有最大2M的Flash空间,是一款性价比不错的Wifi芯片。只要提供VCC(33-36V),GND,Reset就可以实现物联网的功能,对于模块的传统应用,EEL-WifiM600提供完善易用的AT命令,方便用户外挂便宜的MCU实现物联网。
应用场景一:
这是一个比较经典的Wifi物联网应用场景,普通用户或者管理员,通过平台服务器管理或者授权来链接Wifi模块,由Wifi模块自带的GPIO/ADC/PWM等硬件资源,控制或者采集现场的模拟量和数字量,达到主人和设备的交互。
应用场景二:
这个应用场景是某个 Wifi 模块为 AP, 模式接入控制用户, 若干 Station模块 (最大可以是 8 个 Station 模块 )接入这个 AP 模块 ,最多接入 15 个TCP/IP 链接 ,n Station 端实现模拟量,数字量,传感器等等的采集,控制,接口设备的控制 ,不需要服务器接入,自成系统。用户的手机就可以有效的控制或者采集比较多的现实中数字模拟量。
应用场景三:
这个种用场景是 可以大规模的接入模拟,数字终端,只需要 配置一个 Wifi 接入通用路由器就可以了 , 我们实际测试可以很大的设备接入量,服务器管理简单,用户 *** 控容易。
eeLanguage的应用:
ADC芯片主要看两个基本指标,一个是 速度 ,一个是 精度分辨率 。顾名思义,速度代表ADC可以转换带宽的模拟信号带宽,带宽对应于模拟信号频谱中的最大频率。精度是转换后的数字信号与原始模拟信号之间差异的度量。什么是 高端ADC芯片 ?简而言之,它是与消费电子市场不同的ADC芯片。 主要用于军事工业,航空航天,有线和无线通信, 汽车 ,工业和医疗仪器(核磁共振,超声)等。 对过程,性能和可靠性有极高要求的领域。
芯海 科技 的主要产品是低速和高精度ADC信号链芯片和高可靠性MCU芯片 。主要应用领域是智能 健康 ,压力触摸,智能家居,工业测量和微处理器。该公司是 国内为数不多的能够跨越模拟电路和数字电路技术两个主要领域的信号链芯片公司之一 ,掌握了全球人工智能物联网基础设施的测量和控制的两个主要节点,并将其与自己的ADC和MCU技术结合使用,可为AIoT设备提供“精度”。 Perception ADC +精确控制MCU +精确AI算法”来实现信号链生态闭环的一站式解决方案。具体包括:①高精度ADC芯片:通过测量现实世界中的模拟信号并将其转换数字化;互联网时代的兴起要求全球约50%的电子产品ADC芯片/模块主要用于对技术和性能要求极高的领域,同时,MCU被用作智能的核心。控制,并将CPU和内存集成在芯片上形成芯片级计算机已成为信息产业和工业控制的基础。②信号链MCU芯片:从测量到计算再到控制,信号链的完整闭环形成; Chipsea竞争的核心价值点主要在于高精度传感技术,可靠性和高可靠性控制技术,公司积累了高精度智力的离子测量ADC / AFE技术已有很多年了,后者来自该公司对高可靠性MCU芯片技术的积累。
芯海 科技 的下游客户包括小米,华为等,公司将资源集中在芯片设计和研发上,以提高公司对下游客户的响应效率;在分销模式方面:(智能医疗芯片销往小米,华米,乐心、香山),卓新微(通用微处理器芯片销往万魔声学),威盛康 科技 和中电国际信息 科技 等下游优质分销商达成长期,深厚而稳定的合作关系;公司的上游采购主要集中在芯片制造成本上,公司是一家无晶圆厂模式集成电路设计公司,专注于集成电路设计,这有助于更快,更好地响应市场需求的变化。公司与华虹半导体,天水华天,易兆微,中芯国际等国内的专业集成电路制造,封装和测试公司建立了稳定的合作关系,有效地保证了芯片生产能力。
芯海 科技 经历17年的发展, 已打破国外对国内高精度ADC的垄断,是目前国内高精度芯片235有效数字的记录保持者,其24位低速高精度芯片CS1232的差分输入阻抗高达5GΩ,误差温度漂移低至05ppm / ,分辨率超过百万分之一,在业界处于高水平同类芯片中的标准 。在智能 健康 芯片方面,公司的代表性产品主要是CS125X系列芯片(主要用于人体脂肪秤,红外线额头温度计等)。主要竞争对手是国际知名的TI公司。在MCU芯片领域,中国MCU市场相对分散,芯海 科技 具有独特的技术优势和巨大的潜力, 目前,中国的MCU市场仍然主要由意法半导体,恩智浦和瑞萨 科技 等外国制造商占领。排名前八位的国外MCU制造商占据了8408%的市场。尽管国内市场也像兆易创新,中颖电子等MCU厂商脱颖而出,但整体市场份额仍然较低,从替代进口的角度来看,国内的MCU芯片设计公司还有很大的提升空间。
芯海 科技 当前最高级的MCU微控制器芯片是32位产品,主要用于电源快速充电领域。当前的32位MCU产品主要是CS32G020 / 021系列,标准工业产品是赛普拉斯的CCG3PA系列和ST的STM32G071K8系列。 MCU芯片的应用领域非常广泛,集成电路领域的市场规模相对较大。目前,中国的MCU市场仍由ST(STMicroelectronics)和NXP(NXP)等国外制造商的MCU主导。国内的MCU芯片设计公司有很大的提升空间。 与国内第一梯队公司兆易创新,中颖电子等公司由于终端应用领域的不同,与公司没有直接的竞争关系。兆易创新主要是32位的应用于物联网,工业控制等。在该领域,公司的MCU芯片目前是8位的,主要用于电子消费产品,32位MCU产品目前主要用于电源快速充电领域。
2020年前三季度公司营业收入为254亿元,同比增长6688%;其中,第三季度实现营业收入9400万元,同比增长5949%,归属于母公司所有者的净利润6100万元,同比增长21662%。
A股上市公司半导体信号链芯片黑马股芯海 科技 自上市以来保持震荡上行格局,主力阶段性控盘结构,据大数据统计,获利筹码约为95%,主力筹码约为54%,主力控盘比率约为41%, 趋势研判与多空研判方面可以参考15日EXPMA与35日EXPMA。
1、在Windows10系统桌面,双击桌面上的“控制面板”图标,打开控制面板设置窗口。
2、在打开的控制面板窗口中,点击“设备和打印机”图标
3、在打开的设备和打印机窗口中,右键点击要编辑的打印机图标,在d出菜单中选择“打印机属性”菜单项。
4、在打开的打印机属性窗口中,点击端口标签。
5、在打开的端口页面中,点击“配置端口”按钮。
6、在这里就可以编辑端口名,IP地址以及端口号了。还可以设置打印协议,如果是激光打印机请选择Raw,如果是针式打印机的话,选择LPR就可以了。
产品类型 数码复合机
颜色类型 彩色
涵盖功能 复印/打印/扫描
速度类型 中速
最大原稿尺寸 A3
内存容量 标配:3GB,最大:3GB
供纸容量 标配纸盒:500页(2个),多功能手送托盘:100页
介质重量 标配纸盒:60-256g/㎡
双面器 标配(无堆叠,A3-A5,B6,A6)
自动输稿器 标配,双面自动输稿器
网络功能 支持有线网络打印
接口类型 USB20/11
复印速度 26cpm
复印分辨率 600×600dpi
原稿类型 纸张,书本,三维物体(最重:2Kg)
复印尺寸 A3-A5,B6,A6,长纸
摘 要:本文设计并实现了基于24GHz ISM频段射频收发芯片nRF2401的计算机短距离无线数据采集系统。该系统采用PC作为系统控制中心,以C8051F021单片机为核心构成数据采集传送的前端,并且采用nRF2401芯片进行数据无线发射与接收。关键词:ISM频段; 射频; C8051F021单片机; nRF2401
引言
针对某医疗装置中的人体生理信号采集和传输问题,本文设计了计算机近距离无线数据采集系统。采用Nodic公司的nRF2401作为无线收发核心器件。系统由一台PC、无线数据接收模块和无线数据采集发射模块组成。无线数据发射模块以C8051F021单片机为处理核心,采用单片机内部的12位ADC对现场的模拟信号进行采集和发送;无线数据接收模块以C8051F021单片机作为处理核心,接收与发射模块由nRF2401无线收发芯片完成,采用MAX5591实现12位D/A转换,采用 RS-485总线与PC进行通信,它负责现场数据的接收和初步处理,并转发给PC以供显示和监控,同时将数字量转换为模拟量,供示波器显示;PC有良好的人机界面,利用NI的虚拟示波器显示远端现场采集的数据,并可以向现场的采集模块发送控制命令,同时可以实现保存采集数据、打印、回放历史数据等功能。
系统分析及设计
计算机短距离无线数据采集系统组成如图1所示。
图 1 系统组成框图
系统分析及硬件设计
由于现场要采集的数据为医学人体实验数据,幅值大约在-10V~+10V之间,频率为300Hz,要求测量误差低于10mV,C8051F021自带的12位ADC在精度上可以满足要求;但是单片机中的ADC要求输入为正电压,同时考虑到转换精度要求,故需要对信号进行转换,将原信号转换为幅值在0~3V、频率300Hz左右的信号。可以利用MAX4194组成信号转换电路,将模拟信号的零参考电平抬升到10V。这样,原先-10V~0V之间的电压信号转换为0~10V之间的电压,而原先0V~10V之间的电压转换为10V~20V之间的电压。这样就完成了原始信号的转换,适应了单片机的输入要求。单片机A/D转换参考电压选择外部33V,由MAX6013提供。
考虑到无线数据的发送与接收特点,故选用Nordic 公司的nRF2401芯片。nRF2401是单片射频收发芯片,工作于24GHz~25GHz ISM频段,芯片内置频率合成器、功率放大器、晶体振荡器和调制器等功能模块,输出功率和通信频道可通过程序进行配置。芯片功耗非常低,以-5dBm的功率发射时,工作电流只有105mA,接收时工作电流只有18mA。其独有的DuoCeiver技术使nRF2401可以使用同一天线,同时接收两个不同频道的数据。nRF2401使用跳频技术,在2400MHz~2527MHz之间设立了128个频道(每个频道带宽1MHz),频道间的切换时间小于200ms。此外,nRF2401内置CRC编解码模块,可以在不增加编程难度的条件下减小误码率。
无线数据接收后,要进行D/A转换,供示波器观看;考虑到数据的采集精度要求,故采用了 MAX5591作为转换器件,一方面可以方便地与C8051F021单片机SPI接口连接,另一方面,它是12位DAC,与采集端的ADC匹配,可减小转换误差。
无线数据接收到终端后,要求能直观地观看,并且可以对现场的数据采集次数、采集启停时间进行控制,故需要将数据传到PC,进行显示;同时,通过人机界面,对现场进行远程控制。PC采用VC++编写程序,利用NI 的虚拟示波器和其它控件实现友好的人机界面,数据显示、存储和打印功能。
系统中的主要软件模块
系统软件主要由上位机软件和下位机软件组成。
上位机软件主要实现与单片机通信、波形显示、数据存储、数据回放、打印等功能。下位机的主要功能有:系统初始化、数据采集(A/D转换)、无线数据发射、无线数据接收、数据D/A转换、与PC串口通信等。下面重点介绍下位机的无线发射与接收部分软件。
无线数据收发主要通过对nRF2401进行 *** 作实现,包括器件配置、发送数据、接收数据等。nRF2401的工作模式通过引脚PWR_UP、CE和CS选择。在RX/TX模式下,有两种工作方式:ShockBurs和Direct Mode。本系统选用了ShockBurst模式,这种模式下需要配置的内容有:接收数据长度、接收通道地址、CRC校验、工作方式、发送频率、传送速率、接收与发送等。需要15字节的配置内容,下面给出了16进制的配置内容:0x80,0x80,0x00,0xcc,0xcc,0xcc,
0x00,0xcd,0xcd,0xcd,0xcd,0x83,0x4f,
0x05。
难点分析及解决方法
nRF2401半双工通信方式与C8051全双工通信接口的转换
在数据的采集端,单片机与射频模块是双向通信,可以直接采用单片机自带的SPI 接口与射频模块单向通信,包括配置射频模块的工作方式、接收通道地址、接收数据长度、接收频率、发送功率等参数和要发送的采集数据;当单片机要读取远端发送的控制命令时,要将SPI模式关闭,同时将MOSI、DR1端口定义为输入方式,然后将射频模块接收的控制命令读到单片机内部,并根据控制命令进行相应的 *** 作,如采集通道选择、采集次数设定、开始采集、停止采集、发送数据等。
表1 实验数据表
在接收端,单片机和射频模块之间也是双向通信,单片机首先关闭SPI 模式,将MISO定义为输入模式,通过模拟的SPI *** 作,对射频模块进行配置;当有控制命令要发送时,仍将MISO端口定义为输出模式,将射频模块配置为发送模式,将控制命令发送到数据采集终端;当要接收采集终端传来的数据时,首先将射频模块配置为接收模式,然后打开SPI 功能,利用单片机的SPI接口,将数据读到单片机内部。
这样,就完成了射频模块的半双工通信接口与单片机全双工通信接口的转换。
单片机与MAX5591之间的
SPI接口通信
C8051单片机的SPI *** 作时序不能满足MAX5591的时序要求。要使单片机和MAX5591之间进行数据传输,必须根据MAX5591的时序要求将单片机的SPI时序进行转换。
实验结果及分析总结
实验结果
现场模拟电压信号通过12位ADC转换为数字量,通过无线方式传送到远端监控室,一方面通过DAC转换为模拟量,供示波器观看;另一方面,通过RS-232传送到PC进行显示、存储和打印。表1是实验数据。
分析总结
从试验数据可以看到,系统实现了现场模拟电压信号的采集、无线传输以及模拟信号还原,误差不大于02%,满足了设计要求。同时系统还存在着不足之处:在数据量加大,传输速率为1MHz时,偶尔会出现数据丢失现象;当被测信号频率大于500Hz的时候,信号复现时会出现波形失真。
系统实现了远端现场采集8路人体生理信号,无线传送到监控中心并复现现场信号的功能。实验证明,系统在250Kbps速率下无线传输距离可达50米,采集信号误差低于05% 。数据传输中采用了16位CRC校验,降低了误码率。该系统已经在某医疗器械上得到应用。经改造,系统可以采集现场的数字量和一些开关量,实现设备状态监测和开关量控制等。
结语
本文采用软件切换的方式实现了半双工器件与全双工器件的通讯转换,采用软件模拟SPI *** 作,解决了多SPI器件之间的通信协议匹配问题。■
参考文献:
1 沈阳新华龙电子有限公司,C8051F020/1/2/3 混合信号ISP FLASH 微控制器,2005
2 赵念强,鲍可进,申屠浩基于SoC单片机8051F的码头供给监控系统 北京:微计算机信息, 2005年第3期第70页
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)