无线物联网领域各种无线协议那个更好用?

无线物联网领域各种无线协议那个更好用?,第1张

首先介绍一下目前的无线物联网技术的优缺点吧。1、ZigBee:
具有自组网能力,安全性,可靠性,抗干扰能力,穿墙能力和衍射能力较弱,传输距离只有20米左右。其理论节点具有65,000个,但是实际应用中200-300个节点时稳定性上就会衰减
2、Wi-Fi:实现大数据在小范围内的无线传输,可连接30左右个产品但是实际中连接20个以上就极不稳定。适用于智能单品,不适用于系统应用。3、蓝牙 Mesh:
蓝牙Mesh网络,也称为“多跳”网络,具有自组网能力安全性可靠,但穿墙能力和衍射能力较弱,需要借助邻近节点中转来实现长距离大范围组网,组网速度慢,节点多时延迟较大。4、NB-IOT:构建于蜂窝网络,可直接部署于GSM网络、UMTS网络或LTE网络,需基站的支持,具有覆盖广、连接多、速率快、功耗低等特点,但缺点是成本较高,普及性低,每个节点需消耗移动流量
。然后给您推荐一下深圳咻享智能的无线物联网技术YIO协议:具有自组网能力,高安全性,高可靠性,跳频抗干扰能力强,节点数量可达到百万个。单节点半径可达200米,并无限桥接,非常适合大面积,多数量的设备无线管控。

现在网络已经大部分覆盖了我们生活和工作的区域,“网络已连接”成为了我们日常不可或缺的一部分,但是我们在乘坐高铁、地铁时,仍会出现“网络信号不佳”甚至是“网络已断开”的情况。


在地面,我们通信是通过基站4G、5G组网信号覆盖,导航等也可以直接通过北斗定位,但在地下,由于建筑遮挡导致室内接收的信号波被削弱甚至被阻挡,导致了地下通信信号弱的现象普遍存在。同时,地铁的高速移动让地下信号回传定位更是加大了难度。


3月20日,我国首个地铁北斗定位系统在北京开工建设,此次“超大城市轨道交通系统高效运输与安全服务关键技术”项目采用了室内 北斗+5G 融合的定位技术,来实现室内定位信号的播发,让用户可以接收到导航定位的信号, 使地铁站地下空间的定位精度提高到优于2米 。该系统可用于车辆调度、客运组织、应急处置,同时还能让乘客能够在地下环境使用手机地图,并通过三维立体导航实现地铁站内的定位导航。

北斗+5G魅力何在


北斗卫星导航系统(简称:北斗系统) 主要是为全球用户提供全天候、全天时的定位、导航和授时服务。在2020年7月31日,北斗三号系统建成开通并提供全球服务,北斗系统进入全面推广应用的新阶段。


但北斗系统主要是解决室外的定位需求,在交通运输、农林渔业、水文监测、气象测报、救灾减灾、公共安全等方面都得到了基础的应用。其在室外的定位精度在10米左右,且测速精度为02米每秒,授时精度为20纳秒左右。但由于卫星信号无法覆盖室内且对环境免疫性较差,无法满足室内定位以及室外遮挡等复杂区域定位的必要条件,其在室内的应用也被大大限制了。


5G组网 是利用基站部署,具有密集组网、大带宽和多天线等对定位有利的条件,且其空中接口时延低至1ms,移动性支持500km/h的高速移动等,基于5G通信网络的定位技术可在室内实现亚米级甚至分米级的定位精度。


像地铁这类高速通行的地下环境,北斗+5G的深度融合可构建室内外覆盖定位体系,结合 5G大带宽、低时延、广连接 的优势和 北斗系统的导航定位能力 ,大大提高复杂室内环境的定位精度。



地铁北斗定位系统是首次应用在地铁的北斗+5G解决方案,但其实这项融合定位技术早已在市场出现。2021年4月,中国移动开发5G+北斗精准导航系统,并在重庆解放碑地下环道进行试验。

室内定位已是刚需



RFID(射频识别)技术: 利用射频方式,固定天线形成电磁场,附着于物品的标签经过磁场后感应电流生成把数据传送出去,从而进行非接触式双向通信交换数据,实现移动设备识别和定位的目的。它可以在几毫秒内获取厘米级的定位信息,且电磁场具有非视距的优点,RFID室内定位技术也具有传输范围大、成本较低的特征。但其不具有通信能力,抗干扰能力较差,不便于整合到其他系统之中,且用户的安全隐私保障和国际标准化都不够完善,因而一般应用在物流、仓库定位中。


WiFi技术: WiFi室内定位分为两种,一种是利用移动设备和无线网络接入点组成的无线局域网络,通过差分算法,来比较精准地对人和车辆的进行定位追踪。另一种是事先记录巨量的确定位置点的信号强度,通过新增设备的信号强度与巨量数据库对比,来完成定位跟踪。WiFi定位最高精确度大约在1米至20米之间,但Wi-Fi接入点通常都只能覆盖半径90米左右的区域,而且很容易受到其他信号的干扰,定位器的能耗也比较高。


ZigBee技术: ZigBee是一种短距离、低速率的无线网络技术。它主要是利用无线电波将数据从一个传感器传到另一个传感器,通过传感器之间的相互协调通信进行设备的位置定位。因此ZigBee最显著的特点就是低功耗和低成本,但局限就在于信号传输受多径效应和移动的影响都很大,其衍射能力弱,穿墙能力弱。普遍用于大型的工厂和车间的人员在岗管理系统。


蓝牙技术: 作为一种短距离低功耗的无线传输技术,利用蓝牙接入点与用户连接,通过检测信号强度就可以获得用户的位置信息。蓝牙最大的优点是设备体积小、短距离、低功耗,容易集成在手机等移动设备中。但对于复杂的空间环境,蓝牙定位系统的稳定性稍差,受噪声信号干扰大。然而近些年大火的 蓝牙AOA 以接纳器和发射器为基础,能够在确认的区域内经过多天线丈量信标信号,以及三角形定位法,来核算出信标设备准确方位,精度可高达01里面,但蓝牙AOA的部署环境大部分要求在1-3米的精度场景内。


UWB(超宽带)技术: UWB是近些年兴起的一种传输速率高,发射功率较低,穿透能力较强并且是基于极窄脉冲的无线通信技术,它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或微秒级以下的极窄脉冲来传输数据,从而具有31~106GHz量级的带宽。UWB定位精度可达到亚米级,多应用于室内静止或者移动的活体定位跟踪,但依然存在功耗和成本需优化的问题。

融合定位是未来之势


前文已提到了常见的六种室内定位技术,但物联网的碎片化现象,使得单一技术无法很好地满足场景需求应用,因此融合定位成为了行业需求的趋势。

在去年中国卫星导航定位协会发布《2021中国卫星导航与位置服务产业发展白皮书》中指出,2020年全行业总产值同比增长169%,达到4033亿元。其中 高精度定位市场增速远超全行业,2020年同比增长475%,总产值达到1104亿元。 从2010年到2020年的11年之间,高精度定位产品年销售收入增长了10倍,年均复合增长率高达26%。

单一的定位技术无法填补海量市场差异化的需求,因此类似于 “北斗+”,“5G+”,“UWB+”等融合定位技术 逐渐被推出,逐步完善产业链。像自动驾驶、智慧交通在技术快速演进阶段,“北斗+5G”技术成为了新型的解决方案;在智慧矿井的人员定位系统中,“UWB+ZigBee”技术比单一运用UWB更灵活等等。融合定位可以在单一定位技术上进行缺陷互补,能在场景应用中将功耗、成本、定位精度进行最优化的把控,打造精细化定位方案。

未来,融合定位将会大放异彩。

没网络手机扫一扫共享单车就能自动开锁 这是什么原理
共享单车开锁分三种,机械密码锁就是通过输入手机上接受的密码开锁。蓝牙开锁。和物联网开锁,膜拜是物联网开锁,和蓝牙开锁,小黄车是机械开锁。
蓝牙开锁通过连接你手机的信号接受信息,物联网通过基站接受信息,电是通过太阳能板和脚蹬发电来储能。
摩拜和ofo单车采取的是带有SIM模块的2G网络制式的智能锁。
也就说在智能锁内集成了带有独立号码的SIM卡,通过3G、4G网络,与云端保持通信能力,及时将车辆所在位置(GPS信息)和车辆当前状态(锁定状态或使用状态)报送云端。此种方式存在连接容量低、功耗高等问题,此外,安装此类智能锁的车辆需要人为发电,还将会致使车辆在极端天气下故障率高
ofo以前的机械锁就不说了,电子锁是大势所趋,所以和电信、华为合作,其是以华为的NB-IoT技术为基础的物联网解决方案。
NB-IoT的全称是Narrow Band Internet of Things,中文名为“基于蜂窝的窄带物联网”,这是一项新兴的物联网连接方式,比起蓝牙的连接方式,蜂窝数据的连接方式更符合现代用户的习惯,并且覆盖范围广,只要有运营商的地方都可以接收到,NB-IoT的覆盖范围广、功耗低、开锁快、待机时间甚至可以长达十年。而共享单车不能充电、流动性强的特点恰好需要功耗低、覆盖范围广的解决方案。
打开APP扫码的时候,手机已经识别了锁的编号,然后将编号传送给后台服务器,服务器收到编号后,会把对应编号锁的密码发送到你手机上,当你手机显示开锁中的时候,就是你手机将摩拜服务器传送给你的密码通过蓝牙通信的方式对接到单车的锁子上,密码匹配到后锁就会打开,你就可以骑上车子出发啦。
该种蓝牙锁需要为其供电,因此你会想谁来给它供电呢,当然是骑行者了,车子后轮上具有发电 装置,当你骑行时,会为内置电池充电,这样就解决了供电问题。

随着移动通信技术的发展,人与人的连接正向人与物以及物与物的连接迈进,万物互联背景下的连接需求空前。与此同时,2G/3G减频退网,为NB-IoT做了巨大的市场“让步”,NB-IoT作为具有低功耗、低成本、高集成度等优势的窄带物联网技术,又能够以更低成本带来更加丰富的应用场景。因此,潜在巨大的市场增量空间。
█ NB-IoT模组之基——功耗与稳定
超低功耗模组是电池供电的物联网终端能长时间工作的关键。当前,水电表、燃气表等表计采用的都是电池供电的方式,表计行业对于生产的水电表寿命要求通常为6-8年甚至更长,而NB-IoT模组作为表计内部最大的耗电源,其功耗水平的高低直接影响到表计的使用时长。随着NB-IoT终端运行时间的加长,对异常处理、环境适应、系统稳定性的要求越来越高,对模组的可靠性要求也越来越苛刻。因此,NB-IoT模组的可靠性是物联网设备终端的核心要求。
█ 千锤百炼,造就超高可靠性
作为NB-IoT的推进者之一,美格智能一直专注于NB-IoT模组的SoC定制,始终坚持双平台“两条腿走路”的战略规划。针对于以上问题,美格智能直面行业合作伙伴需求与挑战,就多款NB-IoT模组在严苛的温湿度环境下进行了可靠性测试,以有效破解广大NB-IoT合作伙伴对产品维稳性的疑虑。
“数据是产品性能的主要支撑力”。本次测试美格智能主要针对于公司现有的SLM130、SLM160、SLM130X三款NB-IoT模组进行,最终通过了三个“1000小时”的苛刻量产常规测试。
1000小时常温常湿正常运维:首先,美格智能对三款(SLM130、SLM160、SLM130X)NB-IoT模组产品分别进行了常温常湿环境下的工作运行测试,测试样品联网上电开机1000小时,仍然保持着持续正常的工作运维。
1000小时高温高湿不断网:在高温测试环节,美格智能将NB-IoT模组样品装上eSIM卡和天线并置入环境试验箱,在移动网络覆盖稳定情况下以串口连接方式将模组接入电脑,以1℃/min的速率提升试验箱温度至85℃,并上电开机,通过电脑串口AT命令工具,间隔1分钟循环发生AT命令“AT+ECPING=>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10446908.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存