物联网(IoT)就是在互联网基础上,物与物相连进行信息交换和通信的网络,具体来说,就是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等装置与互联网结合起来形成的一个巨大网络,简称 IoT(Internet of things)。它彻底打破时间、空间等传统思维中的认知和约束,其运用目的是让所有的物品都与网络连接在一起,实现智能化识别、定位、跟踪、监控和管理。在这个超级网络中,物品间通过数据能够彼此进行“交流”,而无需人的干预,进而实现万物互联,无限量地提高劳动的质量及效率,创造出更加美好的人类生活。欧盟定义为:将现有的互联计算机网络扩展到互联的物品网络。大数据定义、思维方式及架构模式
一、大数据何以为大
数据现在是个热点词汇,关于有了大数据,如何发挥大数据的价值,议论纷纷,而笔者以为,似乎这有点搞错了原因与结果,就象关联关系,有A的时候,B与之关联,而有B的时候,A却未必关联,笔者还是从通常的4个V来描述一下我所认为的大数据思维。
1、大数据的量,数据量足够大,达到了统计性意义,才有价值。笔者看过的一个典型的案例就是,例如传统的,收集几千条数据,很难发现血缘关系对遗传病的影响,而一旦达到2万条以上,那么发现这种影响就会非常明显。那么对于我们在收集问题时,是为了发现隐藏的知识去收集数据,还是不管有没有价值地收集,这还是值得商榷的。其实收集数据,对于数据本身,还是可以划分出一些标准,确立出层级,结合需求、目标来收集,当然有人会说,这样的话,将会导致巨大的偏差,例如说丧失了数据的完整性,有一定的主观偏向,但是笔者以为,这样至少可以让收集到的数据的价值相对较高。
2、大数据的种类,也可以说成数据的维度,对于一个对象,采取标签化的方式,进行标记,针对需求进行种类的扩充,和数据的量一样,笔者认为同样是建议根据需求来确立,但是对于标签,有一个通常采取的策略,那就是推荐标签和自定义标签的问题,分类法其实是人类文明的一大创举,采取推荐标签的方式,可以大幅度降低标签的总量,而减少后期的规约工作,数据收集时扩充量、扩充维度,但是在数据进入应用状态时,我们是希望处理的是小数据、少维度,而通过这种推荐、可选择的方式,可以在标准化基础上的自定义,而不是毫无规则的扩展,甚至用户的自定义标签给予一定的限制,这样可以使维度的价值更为显现。
3、关于时效性,现在进入了读秒时代,那么在很短的时间进行问题分析、关联推荐、决策等等,需要的数据量和数据种类相比以前,往往更多,换个说法,因为现在时效性要求高了,所以处理数据的方式变了,以前可能多人处理,多次处理,现在必须变得单人处理、单次处理,那么相应的信息系统、工作方式、甚至企业的组织模式,管理绩效都需要改变,例如笔者曾经工作的企业,上了ERP系统,设计师意见很大,说一个典型案例,以往发一张变更单,发出去工作结束,而上了ERP系统以后,就必须为这张变更单设定物料代码,设置需要查询物料的存储,而这些是以前设计师不管的,又没有为设计师为这些增加的工作支付奖励,甚至因为物料的缺少而导致变更单不能发出,以至于设计师工作没有完成,导致被处罚。但是我们从把工作一次就做完,提升企业的工作效率角度,这样的设计变更与物料集成的方式显然是必须的。那么作为一个工作人员,如何让自己的工作更全面,更完整,避免王府,让整个企业工作更具有时间的竞争力,提高数据的数量、种类、处理能力是必须的。
4、关于大数据价值,一种说法是大数据有大价值,还有一种是相对于以往的结构化数据、少量数据,现在是大数据了,所以大数据的单位价值下降。笔者以为这两种说法都正确,这是一个从总体价值来看,一个从单元数据价值来看的问题。而笔者提出一个新的关于大数据价值的观点,那就是真正发挥大数据的价值的另外一个思路。这个思路就是针对企业的问题,首先要说什么是问题,笔者说的问题不是一般意义上的问题,因为一说问题,大家都以为不好、错误等等,而笔者的问题的定义是指状态与其期望状态的差异,包括三种模式,
1)通常意义的问题,例如失火了,必须立即扑救,其实这是三种模式中最少的一种;
2)希望保持状态,
3)期望的状态,这是比原来的状态高一个层级的。
我们针对问题,提出一系列解决方案,这些解决方案往往有多种,例如员工的培训,例如设备的改进,例如组织的方式的变化,当然解决方案包括信息化手段、大数据手段,我们一样需要权衡大数据的方法是不是一种相对较优的方法,如果是,那么用这种手段去解决,那么也就是有价值了。例如笔者知道的一个案例,一个企业某产品部件偶尔会出现问题,企业经历数次后决定针对设备上了一套工控系统,记录材料的温度,结果又一次出现问题时,进行分析认为,如果工人正常上班 *** 作,不应该有这样的数据记录,而经过与值班工人的质询,值班工人承认其上晚班时睡觉,没有及时处理。再往后,同样的问题再没有再次发生。
总结起来,笔者以为大数据思维的核心还是要落实到价值上,面向问题,收集足够量的数据,足够维度的数据,达到具有统计学意义,也可以满足企业生产、客户需求、甚至竞争的时效要求,而不是一味为了大数据而大数据,这样才是一种务实、有效的正确思维方式,是一线大数据的有效的项目推进方式,在这样的思维模式基础上,采取滚雪球方式,把大数据逐步展开,才真正赢来大数据百花齐放的春天。
二、大数据思维方式
大数据研究专家舍恩伯格指出,大数据时代,人们对待数据的思维方式会发生如下三个变化:
1)人们处理的数据从样本数据变成全部数据;
2)由于是全样本数据,人们不得不接受数据的混杂性,而放弃对精确性的追求;
3)人类通过对大数据的处理,放弃对因果关系的渴求,转而关注相关关系。
事实上,大数据时代带给人们的思维方式的深刻转变远不止上述三个方面。笔者认为,大数据思维最关键的转变在于从自然思维转向智能思维,使得大数据像具有生命力一样,获得类似于“人脑”的智能,甚至智慧。
1、总体思维
社会科学研究社会现象的总体特征,以往采样一直是主要数据获取手段,这是人类在无法获得总体数据信息条件下的无奈选择。在大数据时代,人们可以获得与分析更多的数据,甚至是与之相关的所有数据,而不再依赖于采样,从而可以带来更全面的认识,可以更清楚地发现样本无法揭示的细节信息。
正如舍恩伯格总结道:“我们总是习惯把统计抽样看作文明得以建立的牢固基石,就如同几何学定理和万有引力定律一样。但是,统计抽样其实只是为了在技术受限的特定时期,解决当时存在的一些特定问题而产生的,其历史不足一百年。如今,技术环境已经有了很大的改善。在大数据时代进行抽样分析就像是在汽车时代骑马一样。
在某些特定的情况下,我们依然可以使用样本分析法,但这不再是我们分析数据的主要方式。”也就是说,在大数据时代,随着数据收集、存储、分析技术的突破性发展,我们可以更加方便、快捷、动态地获得研究对象有关的所有数据,而不再因诸多限制不得不采用样本研究方法,相应地,思维方式也应该从样本思维转向总体思维,从而能够更加全面、立体、系统地认识总体状况。
2、容错思维
在小数据时代,由于收集的样本信息量比较少,所以必须确保记录下来的数据尽量结构化、精确化,否则,分析得出的结论在推及总体上就会“南辕北辙”,因此,就必须十分注重精确思维。然而,在大数据时代,得益于大数据技术的突破,大量的非结构化、异构化的数据能够得到储存和分析,这一方面提升了我们从数据中获取知识和洞见的能力,另一方面也对传统的精确思维造成了挑战。
舍恩伯格指出,“执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户”。也就是说,在大数据时代,思维方式要从精确思维转向容错思维,当拥有海量即时数据时,绝对的精准不再是追求的主要目标,适当忽略微观层面上的精确度,容许一定程度的错误与混杂,反而可以在宏观层面拥有更好的知识和洞察力。
3、相关思维
在小数据世界中,人们往往执着于现象背后的因果关系,试图通过有限样本数据来剖析其中的内在机理。小数据的另一个缺陷就是有限的样本数据无法反映出事物之间的普遍性的相关关系。而在大数据时代,人们可以通过大数据技术挖掘出事物之间隐蔽的相关关系,获得更多的认知与洞见,运用这些认知与洞见就可以帮助我们捕捉现在和预测未来,而建立在相关关系分析基础上的预测正是大数据的核心议题。
通过关注线性的相关关系,以及复杂的非线性相关关系,可以帮助人们看到很多以前不曾注意的联系,还可以掌握以前无法理解的复杂技术和社会动态,相关关系甚至可以超越因果关系,成为我们了解这个世界的更好视角。舍恩伯格指出,大数据的出现让人们放弃了对因果关系的渴求,转而关注相关关系,人们只需知道“是什么”,而不用知道“为什么”。我们不必非得知道事物或现象背后的复杂深层原因,而只需要通过大数据分析获知“是什么”就意义非凡,这会给我们提供非常新颖且有价值的观点、信息和知识。也就是说,在大数据时代,思维方式要从因果思维转向相关思维,努力颠覆千百年来人类形成的传统思维模式和固有偏见,才能更好地分享大数据带来的深刻洞见。
4、智能思维
不断提高机器的自动化、智能化水平始终是人类社会长期不懈努力的方向。计算机的出现极大地推动了自动控制、人工智能和机器学习等新技术的发展,“机器人”研发也取得了突飞猛进的成果并开始一定应用。应该说,自进入到信息社会以来,人类社会的自动化、智能化水平已得到明显提升,但始终面临瓶颈而无法取得突破性进展,机器的思维方式仍属于线性、简单、物理的自然思维,智能水平仍不尽如人意。
但是,大数据时代的到来,可以为提升机器智能带来契机,因为大数据将有效推进机器思维方式由自然思维转向智能思维,这才是大数据思维转变的关键所在、核心内容。众所周知,人脑之所以具有智能、智慧,就在于它能够对周遭的数据信息进行全面收集、逻辑判断和归纳总结,获得有关事物或现象的认识与见解。同样,在大数据时代,随着物联网、云计算、社会计算、可视技术等的突破发展,大数据系统也能够自动地搜索所有相关的数据信息,并进而类似“人脑”一样主动、立体、逻辑地分析数据、做出判断、提供洞见,那么,无疑也就具有了类似人类的智能思维能力和预测未来的能力。
“智能、智慧”是大数据时代的显著特征,大数据时代的思维方式也要求从自然思维转向智能思维,不断提升机器或系统的社会计算能力和智能化水平,从而获得具有洞察力和新价值的东西,甚至类似于人类的“智慧”。
舍恩伯格指出,“大数据开启了一个重大的时代转型。就像望远镜让我们感受宇宙,显微镜让我们能够观测到微生物一样,大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发”。
大数据时代将带来深刻的思维转变,大数据不仅将改变每个人的日常生活和工作方式,改变商业组织和社会组织的运行方式,而且将从根本上奠定国家和社会治理的基础数据,彻底改变长期以来国家与社会诸多领域存在的“不可治理”状况,使得国家和社会治理更加透明、有效和智慧。Wi-Fi 6(原称:IEEE 80211ax)即第六代无线网络技术,是Wi-Fi标准的名称。是Wi-Fi联盟创建于IEEE 80211标准的无线局域网技术。Wi-Fi 6将允许与多达8个设备通信,最高速率可达96Gbps。电信全屋WiFi的路由器有WiFi6功能,回答仅供参考,更多安徽电信套餐,业务资讯可以关注安徽电信公众号。智能手机把人类碎片化时间充分利用了起来,对个人对企业都带来了价值,但更碎片化的时间手机做不到,更深层次的个人需求,手机也做不到。智能手表由于具备了离人体更近,佩戴时间更长这两大特征,更加符合人们的使用习惯,作为人体最重要的数据采集终端,这就是智能手表任何一个单一功能的实现,都不是最专业、最高效的前提下,用户和资本依然充满期待的原因。
智能手机不能满足更个性化的需求
从马斯洛的5个需求层次来看,过去的工业时代,更多的是满足人类生理和安全的需求。到了互联网和移动互联网时代,人类的社交和尊重需求开始被满足,智能手机成为重要的终端和入口,智能手机把人类碎片化时间充分利用了起来,对个人对企业都带来了价值,但更碎片化的时间手机做不到,更深层次的个人需求,手机也做不到。随着物联网技术的发展,二八理论和长尾理论很难再继续起作用,因为每个人的需求都能够被针对性的满足。智能手表由于具备了离人体更近,佩戴时间更长这两大特征,更加符合人们的使用习惯,也将为人类带来更大价值。
人类的手腕一直以来都占据着非常关键的位置,智能手表作为人体最重要的数据采集终端,这就是智能手表任何一个单一功能的实现,都不是最专业、最高效的前提下,用户和资本依然充满期待的原因。未来,每台设备都具有数据采集价值的时候,将产生全新的商业模式和商业环境,必将诞生新的伟大的企业。
物联网思维模式带来的商业变革
传感器是物联网最基础最底层的部分,是一切物联网上层应用实现的基础。传感器的应用将是物联网与互联网最大的区别,导致互联网思维到了物联网时代不再适用。互联网思维本身是基于把终端连接到网络上,对互联网思维而言,终端就是入口,就是用户。互联网思维影响下的企业,会与用户终端的交互上下功夫,这就是传统的入口思维,流量思维。如UGC、参与感、粉丝经济、众筹经济等本质上都是互联网思维下的产物。准确的说,互联网是基于人的网络,信息某种意义上靠人来采集分析。
物联网技术最大的不同是信息传递方式的改变,需求表达这一过程将被弱化。物与物之间能交流,会通信是物联网的重要特征,这个过程不再需要有人参与其中。比如我手上戴的智能手表,不管我身在何处,只要我戴着他,他就会24小不间断的自动采集我身体的静默数据,包含睡眠检测、心率、血压、体温等多种维度测量我的健康指标。
如果在一个趋势范围内我的体温超出正常值,手表就会预警提示我去看医生,智能手表所连接的APP后台会利用AI算法,根据我的位置及就医偏好帮我预约适合我的的医生和医院,去医院的路上我就把我的近期身体存储在云端的数据选择性开放给我的医生,到了医院,医生不用望闻问切,不用各种验血、拍片就帮我拟定好了完整的医治方案及用药措施。这样的生活场景归功于传感器和机器智能,让更多人享受更好的体验,得到生活效率的提升。物联网的思维模式,由于信息传输通道的碎片化和多样化,新的商业模式将在此基础上产生。可参考书籍《新零售运营管理(慕课版)》,此书是2020年人民邮电出版社出版的图书,作者是李忠美。
温馨提示:以上内容仅供参考。
应答时间:2021-04-25,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
>物联网是基于互联网之上,使不可交流的物体与物体之间进行交流,而产生的过程,称之为物联网。在过去的十年中,我们见证了各种设备通过网络连接在一起,各种传感器,温度计,交通、流速传感器以及数据传输。
大家都听说过互联网,那有没有听说过物联网呢?
首先从字面来理解,就是物品和网络之间相连。起初这个概念最早是由美国提出来的:把所有的物品通过物联网域名相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪等等的一种网络概念。当然了,物联网的官方定义是:是基于互联网之上,使不可交流的物体与物体之间进行交流,而产生的过程,称之为物联网。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)