2、电力生产管理。利用物联网技术实现调度指挥中心与现场作业 人员的实时互动、电力巡检管理以及重要杆塔的实时监测和防护。
3、增强的电网安全性–传统的电网监视系统(通过IP网络连接时)容易受到网络攻击。它们缺乏强大的网络安全功能,因为传统协议在设计时并未考虑到现代威胁。IIoT网关可以使用最新的安全方法来最大程度地降低安全风险,并更新和修补安全功能以适应不断变化的网络安全威胁。
4、智能用电。利用物联网技术有助于度实现智能用电双向交互服 务、用电信息采集、家居智能化、家庭能效管理、分布式电源接入以及 电动汽车充放电,为实现用户与电网的双向互动、提高供电可靠性与用 电效率,以及节能减排提供技术保障。
5、实时推送数据–依赖于集中式的数据轮询会导致大量延迟和扩展能力有限。许多IIoT网关在本地轮询数据并创建可以与传统SCADA系统以及基于云的平台进行通信的数据模型,以利用现代Web服务。
6、设备状态监测。copy利用物联网技术对常规机组、水电站坝体、新 能源发电、电力设备进行状态监测,提高一次设备的感知能力。
7、通过低功耗传感器增强传感–IIoT网关可以从旧协议(例如DNP3或更新的云协议)转换LPWAN传感器数据。
8、利用云–随着分布式电网变得越来越复杂,需要管理更多设备,IIoT网关能够连接到基于云的基础架构,并通过云管理的仪表板与用户共享实时数据和分析。
9、电力资产全寿命周期管百理。将射频识别和标识编码系统应用于 电力设备,进行资产身份管理、资产状态监测以及资产全寿命周期管 理,实现自动识别目标对象并获取数据。
智能电网的支撑技术
智能电网的主要支撑技术有实现收集、存储、分析、处理、显示海量信息数据的可靠信息技术,高速、双向、实时、集成的通信技术,具备资源优化配置、科学决策、电网运行高效管理、电网异常及事故快速响应的智能调度技术,电能量消费与预测技术,中压或低压配电网上的分布式能源接入技术,规划控制技术,包括电能质量、功率因数、相位、故障事件、变压器和线路负荷等数据在内的参考量测技术及相关传感器技术等。
物联网相关技术在智慧电网中的作用
在当前的电网中,传感器的应用很广泛,但主要是机电类传感器,其获取的方法往往是物理方法,传递的信号往往是模拟量,这就决定了它往往是通过电缆进行传输。智能传感器不但涉及传感技术,还与微机械、微电子、数字信号处理、网络通信直接相关。
它获取信息的方式往往是将所需获取的信息直接转变为光信号或者电信号,输出为数字量。智能传感器还具有一定的信息存储和分析能力,可以对信息进行初级加工再向上一级传递,避免了上级设备对于信息的处理量过大,也节省了网络流量。
物联网技术中,信号一般使用光缆进行传输,对于设备内部的状态量等不便于直接连线传输的信号,还可以采用无线传输,保证数据的实时性。在主站,由于传输来的数据为数字量,就避免了繁杂的数据转换和处理工作,这些优势应当发挥。但是,电网对于信息的可靠性要求很高,特别在信息传输方面。
如果是在民用或者商用行业,信息传递的可靠性要求较低,物联网当前的可靠性水平便可以胜任。但对于电网来说,错误信息传递的结果是很严重的,可能导致电网中自动装置的错误动作,切断正常运行的大量负荷,或者电能计量出现重大失误等。在可靠性无法保证的情况下,物联网技术的重要优势——信息传递将难以发挥作用,这也就相应导致了在网络层之上的应用层无法应用于智能电网。
物联网技术涵盖感知层、网络层、平台层和应用层四个部分。
感知层的主要功能就是采集物理世界的数据,其是人类世界跟物理世界进行交流的关键桥梁。比如在智能喝水领域会采用一种流量传感器,只要用户喝水,流量传感器就会立即采集到本次的喝水量是多少,再比如小区的门禁卡,先将用户信息录入中央处理系统,然后用户每次进门的时候直接刷卡就行。(了解更多智慧人脸识别解决方案,欢迎咨询 汉玛智慧)
网络层主要功能就是传输信息,将感知层获得的数据传送至指定目的地。物联网中的“网”字其实包含了2个部分:接入网络、互联网。以前的互联网只是打通了人与人之间的信息交互,但是没有打通人与物或物与物之间的交互,因为物本身不具有联网能力。后来发展出将物连接入网的技术,我们称其为设备接入网,通过这一网络可以将物与互联网打通,实现人与物和物与物之间的信息交互,大大增加了信息互通的边界,更有利于通过大数据、云计算、AI智能等先进技术的应用来增加物理和人类世界的丰富度。
平台层可为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑数据上报至云端,向上提供云端API,服务端通过调用云端API将指令下发至设备端,实现远程控制。物联网平台主要包含设备接入、设备管理、安全管理、消息通信、监控运维以及数据应用等。
应用层是物联网的最终目的,其主要是将设备端收集来的数据进行处理,从而给不同的行业提供智能服务。目前物联网涉及的行业众多,比如电力、物流、环保、农业、工业、城市管理、家居生活等,但本质上采用的物联网服务类型主要包括物流监控、污染监控、智能交通、智能家居、手机钱包、高速公路不停车收费、远程抄表、智能检索等。
1、泛在电力物联网目前行业龙头有:国电南自600268(国家电网旗下上市公司,拥有直流充电桩、交流充电桩、充电监控平台等)。2、人气龙头目前有:中元股份300018(电力系统智能化记录分析和时间同步);力源信息300184(全资子公司提供能源互联网技术解决方案提供商);金冠股份300510(国内智能电网、泛在电力物联网的主流供应商)。
经国网多年的合作开发,宽带(中频)电力线载波通信技术规模化应用的时机终于来临!
中国现代电网量测技术平台
张春晖
2018年6月21日
1)IEEE19011国际标准
网上报道:中国电科院发布”IEEE19011国际标准”
— 2018年5月22日,由中国电科院、国网信通产业集团等企业联合制订的IEEE19011《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准》正式发布实施。
—该标准是以国网Q/GDW 11612 《低压电力线宽带载波通信互联互通技术规范》为基础,大量使用创新技术,提出以OFDM、双二元Turbo编码、时频分集拷贝为核心的物理层通信技术规范,以及以信道时序优化、树形组网、多台区网络协调为代表的数据链路层技术规范。
该标准的发布,填补了中频电力线载波通信应用在智能电网领域国际标准的空白,提升我国在物联网领域的国际影响力和话语权。
— IEEE19011标准通过构建高带宽、高可靠、低时延、低成本的电力线通信网络,支持远程自动抄表、配电台区监测等多种应用场景,实现以电力线载波通信为基础的物联网技术在能源互联网中的有效应用。
该标准将促进电力线载波通信芯片、通信模组、智能终端全产业的发展。
2)国网,宽带(中频)电力线载波通信技术合作开发进程
国网为何重视宽带(中频)电力线载波通信技术的开发
国网的用电信息采集系统建设,从2010年开始,2017年基本完成,用电信息采集43亿户,覆盖率99%,用于用电信息采集设备及用户工程投资巨额,约510亿元。其中,70%的本地通信方式采用窄带(低速)电力线载波通信技术。经过多年的运行,窄带(低速)载波通信方式的通信速率慢,自动采集成功率低,有的居民小区的单相电表,24h都抄不到表,成为本地通信的技术瓶颈,一时难以解决。由此,国网利用配电网户户通电电力线的资源优势,将宽带(中频)电力线载波通信实用化应用,列为通信新技术重点开发课题。
根据中国电科院专家提出的配电、用电管理通信流量的预测:宽带(中频)载波通信速率需满足下列用电信息采集的要求:
· AMR/AMI的通信速率:12/20 k bps
·负荷管理10 k bps
·扩大到配电业务,配电自动化、报警管理、DG均为10 k bps;
·配电视频监控要求1 M bps;配电新提出的其它视频通信要求。
— 2012年7月,国网”新一代智能电力线载波通信关键技术研究”项目启动。该智能PLC是具有跨频带(150 k Hz---10 M Hz)、频率自认知、自适应、自组网、协调通信功能的载波通信技术。
该项目由中国电科院牵头,国网通信公司、南瑞集团参与。
2014年11月,该项目通过验收。其智能PLC系统在绍兴、长春电网的中、低压电力线路上开展了实际测试与验证。
— 2014年7月,在本文作者组织召开的《进口高端电能全性能研究》课题(长沙:威胜)技术交流会议上,华为海思公司介绍了自主设计的Hi3911型宽带(中频)载波芯片,频段:2---12MHz,通信速率200k---14M bps。
由此估计:华为海思公司的中频载波芯片推出时间还要更喜欢早一点。
— 2014年10月,国网召开低压电力线宽带载波通信技术标准研讨会,提出宽带载波通信单元技术规范、检验规范、通信协议(初稿)。
— 2014年11月,在本文作者组织召开的电力线载波通信新标准、新产品(青岛:东软)技术交流会议上,重点交流国际/国内宽带与OFDM窄带载波通信新技术。
— 2015年,据了解,华为海思公司将(中频载波芯片)物理层及通信协议在国网宽带载波通信技术企业标准中进行共享。各宽带载波芯片厂家在芯片物理层统一的前提下,自主开发宽带载波产品。
— 2016年,在本文作者组织召开的当前电表行业发展热点问题(重庆华立)讨论会上,重庆市电科院介绍了在大型公变台区(约700户)进行现场宽带载波通信互联互通测试结果。
— 2017年,江苏省电科院完成宽带载波模块互联互通测试,验证宽带载波模块在架空线路、预埋电缆、城市及农村等现场复杂运行工况下的互联互通情况。
— 2017年,重庆邮电大学、重庆市电科院《基于System Generator的宽带电力线脉冲噪声实现方法》提出:实现基于FPGA的Class A 噪声发生器,将有利于宽带PLC产品抗噪声性能评估测试。
— 2017年,国网发布:《低压电力线宽带载波通信互联互通技术规范(Q/GDW 11612---2016)》
据了解,该标准分为6个部分:
第1部分:总则
第2部分:技术要求
第3部分:检验方法
第4部分:物理层及通信协议
第5部分:链路层及通信协议
第6部分:应用层技术要求
— 2018年5月,中国电科院发布:《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准(IEEE19011)》
3)青岛东软公司:推出符合IEEE19011国际标准的宽带(中频)载波通信芯片,并获得国际通行证
网上报道:”IEEE发布载波新标准,东软载波芯片获国际通行证”
—东软推出新的载波(中频)芯片的型号:
Eastsoft SSC1667。现在,已有至少100万颗芯片在网使用,并不断深化应用,拥有超级电容停电上报台区自动识别等功能。
—东软SSC1667型宽带(中频)载波通信芯片的设计性能
· 40nm Flash工艺,SOC芯片集成度高,Flash内置,外围成本低
· OFDM正交频分复用调制技术
·通信速率6MHz
·通信频带07MHz---12MHz
·功耗更低:静态功耗07W/动态1W
·支持新的/老的国网宽带互联互通标准,支持频段切换功能
· 4频段、6种模式,具体支持的标准和频段:(略)。
4)点评
—我国在电力线载波通信技术国际标准制订方面实现零的突破
在国际上,由中国电科院等单位联合制订的《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准(IEEE19011)》,填补了中频电力线载波通信应用在智能电网领域国际标准的空白。
经查证:
·国际上,宽带(高频:2MHz及以上)电力线载波通信标准的制订:先期研究的重点领域是智能家居网络,后来面向家庭数字多媒体、视频、音频、数据、能源智能化控制等通信的需求。这方面,Home Plug(家居即插)联盟提出的宽带电力线载波通信技术标准较早、面广,其中的部分宽带载波通信标准,已经转换成IEEE国际标准:
从2001年的Home Plug 10标准,数据速率最高达14M bps,主要定位于家庭网络应用,也有用于低压宽带接入;2004年的Home Plug 10 ---Turbo标准,提升数据速率,最高数据速率85M bps,;2005年的Home Plug AV标准,频段:18---25MHz,最高数据速率200M bps,用于传输视频、音频、数据;2006年的Home Plug Green PHY标准,是为家庭和建筑物中嵌入式智慧能源和自动化应用而设计,它与IEEE1901/Home Plug AV标准的电力线网络协议互 *** 作,并具有将数据速率由200M bps降低为低速率(注:10M bps)、低功耗(注:功耗降低80%)、低成本和宽广家庭覆盖能力等特性。
·国际上的窄带(低频:500kHz及以下)OFDM电力线载波通信标准的制订:
2009年,MAXIM公司发布G3标准
2011年,PRIME联盟成立,发布G3---PLC标准;ITU(国际电信联盟)的G9955兼容G3---PLC物理层;IEEE P 19012兼容G3---PLC物理层
2012年,G3---PLC更新,由ITUG9903发布;10月发布更新版本
2013年,ITUG9903发布更新版本;IEEE19012投票通过成为正式版本
2014年,ITU G9903发布再更新版本。
这些窄带通信标准,使用OFDM的低频窄带载波通信技术,以较高的传输速率及频段具有d性等优势而快速兴起,主要用于自动抄表管理、智能家居网络,频段:10k---500k Hz ,数据传输速率20k---150k bps。
·以上情况说明:
a1 国际上,长期以来,适用于智能电网用电信息采集的中频(150k---12MHz)电力线载波通信方式,一直未推出国际标准。
a2 国内,自2009年国网提出开展电力用户用电信息采集系统建设之后,对适用于智能电网应用的中频(低于12MHz)电力线载波通信技术进行多方位的合作研究。
IEEE19011国际标准的提出,是基于国内通过几年的宽带(中频)电力线载波通信的中频载波芯片开发、现场宽带载波通信干扰性能测试、宽带载波通信互联互联讨论、宽带载波通信标准制订等多方位的合作创新、系统研究成果。
—从应用的视角,中频(低于12MHz)电力线载波通信有哪些技术难点与争议
国际上,迟迟未能推出适用于智能电网应用的中频(低于12MHz)电力线载波通信国际标准,估计主要有应用技术难点与争议。
经综合2014年青岛电力线载波通信新标准/新产品技术交流会议、2016年重庆电表行业发展热点问题讨论会议的情况,本文作者提出中频电力线载波通信应用技术开发的3个难点与争议问题:
其一,中频电力线载波通信双向高频干扰。网上报道:2013年6月,ITU---R(国际电信联盟无线电通信部门)发布《电力线通信系统对工作在80MHz以下的无线电通信系统的影响(ITU---R SM2158---3报告)》,对电力线载波通信方式提出质疑。
注:SM系列,频谱管理。
(说明:目前尚未看到国内有关部门对ITU--R SM2158---3报告的评论)
其二,配网预埋电缆、无功补偿装置对中频电力线载波通信影响的严重程度与改进措施的合理性评估。经现场实测,有时将集中器布置在
无功补偿装置之前(电源侧),自动抄表成功率极低甚至抄不到表。
其三,宽带载波通信互联互通问题。据了解,在国内,各宽带载波芯片厂家的中频载波芯片物理层及通信协议已经统一,网络的路径选择和中继功能还是各不相同,在现场实际的组网和抄表时,互联互通的效果并不理想。
针对以上难点与争议问题,据了解,国网计量部门统一组织了现场测试分析,提出一些改进措施。但是从期刊、网上很少见到这方面的报道。
这次,IEEE19011国际标准提出中频(低于12MHz)电力线载波通信网络的物理层、数据链路层技术规范,其大量使用的创新技术,提高了通信信号(位、帧)的收发质量和数据传输性能。据了解,随后国内有意向继续合作开发中频载波通信网络的网络层及其它层级的技术规范,期望在组网技术、路由算法、数据传输、互联互通等深层次通信技术进行开发统一,实现大幅度提升用电信息采集速率、自动采集成功率,化解中频载波通信质量引发的应用难题。
同时,本文作者提出尚需合作研究制订另一个重要标准:中频电力线载波通信信道监测、管理技术规范。该技术规范制订的建议,在本文第5)部分叙述。
中频电力线载波通信的高质量,只有从中频载波通信网络技术性能开发与信道监测管理两个方面措施相结合,才能较好地化解中频电力线载波通信应用的3个难题。
—载波模块价位。与窄带(低速)载波模块相比,目前的中频载波模块价位还高,将影响其大规模推广应用。但是,可以预期,随着中频载波模块应用量不断增长,其价位可以降到合理水准。
—拓展载波模块更新资金渠道
2010---2017年,国网用电信息采集设备的招标量:集中器约464万台,采集器约5115万台。如集中器、采集器的窄带载波模块70%,更新为中频载波模块,按目前的中频载波模块价位估计,集中器的新模块投资65亿元,采集器的新模块投资25亿元,单相载波表的新模块(按国网供电服务区457亿户的15%估算)投资34亿元。以上3项合计,国网采用中频载波模块需投资655亿元。按传统电子式电表8年轮换周期,每年需载波模块更新资金82亿元。
2017年底,国网用电信息采集系统建设基本完成。现在要申请进行用电信息采集载波模块的更新资金,化解本地通信技术瓶颈,这条资金渠道是否可以走通,还难以预料。国网,当前投资的重点还是特高压工程与推进配电网智能化建设。
目前,居民用电低压电网的主动故障报警与抢修,电能质量监测与控制,配电网与用户之间实用互动功能开发,是国网推进智能配电网建设的短板。由此,通过各级电网配电管理部门提出要求:拓展用电信息采集系统配电用新功能,申请中频载波模块购置资金,则是另一条合理渠道。
5)国内,中频电力线载波通信信道监测、管理技术规范制订的建议
国际上,EN50065:《3kHz至1485kHz频段的低压电气装置上的信号传输》:
第1部分: 一般要求、频带和电磁骚扰
第2---1部分: 95kHz至1485kHz频段用于住宅、商业和轻工业环境下工作的交流电源通信设备与系统的抗扰度要求
第2---2部分: 95kHz至1485kHz频段用于工业环境下工作的交流电源通信设备与系统的抗扰度要求
第2---3部分: 3kHz至95kHz频段用于电力提供商和分销商工作的交流电源通信设备与系统的抗扰度要求
第4---1部分: 低压去藕滤波器 --- 通用规范
第4---2部分: 低压去藕滤波器 --- 安全要求
第4---3部分: 低压去藕滤波器 --- 输入滤波器
第4---4部分: 低压去藕滤波器 --- 阻抗滤波器
第4---5部分: 低压去藕滤波器 --- 分段滤波器
第4---6部分:低压去藕滤波器 --- 相位藕合器
第7部分: 设备阻抗
国内:中频电力线载波通信信道监测、管理技术规范的制订,可参考EN60065系列标准,结合中频电力线载波通信的特征,需要涵盖中频频带和双向电磁骚扰限值;中频载波信号衰减及信噪比测量,集中器选址勘测;双向高频干扰监测;
各类应用环境的抗传导、幅射干扰要求;预埋电缆、无功补偿设备对中频载波通信影响测试及处理方案;同频干扰测试及改进方法;各类去藕滤波器;设备阻抗;双向通信与网关技术规范;其它要求。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)