物联网是一个什么概念?

物联网是一个什么概念?,第1张

物联网(The Internet of Things,简称IOT)是指通过 各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化 学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
物联网( IoT ,Internet of things )即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通[2] 。
物联网是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。由此,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理[5] 。
整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。根据物联网的以上特征,结合信息科学的观点,围绕信息的流动过程,可以归纳出物联网处理信息的功能:
(1)获取信息的功能。主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。(2)传送信息的功能。主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。(3)处理信息的功能。是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。(4)施效信息的功能。指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态
希望我能帮助你解疑释惑。

众所周知。国内的通讯巨头有中国移动,中国联通,中国电信。在通讯基站建设制造这方面有华为,中兴等 科技 公司。国内的互联网 科技 公司有,阿里巴巴,腾讯,百度,美团,京东等。

这些公司中具体有哪些搭建了物联网平台?他们搭建的物联网平台又是怎么样的?
首先我们来了解一下什么是物联网平台,物联网平台全称物联网管理系统平台。即IOT管理系统平台, 那么,什么是IoT管理系统平台呢?
要了解什么是物联网平台,首先您需要了解一个完整的IoT系统的组件。

那么“物联网系统如何工作”。

完整的IoT系统需要硬件,如传感器或设备。 这些传感器和设备从环境(例如水分传感器)收集数据或在环境中执行动作(例如浇水作物)。

完整的IoT系统需要连接。 硬件需要一种将所有数据传输到云端的方法(例如发送湿度数据)或需要一种从云接收命令的方法(例如,现在对作物播种)。对于一些IoT系统,可以在硬件和连接到云之间的中间步骤,例如网关或路由器。

完整的IoT系统需要软件。 该软件托管在云端(什么是云端),并且负责分析从传感器收集的数据并作出决定(例如,从湿度数据知道刚刚下雨,然后告诉灌溉系统今天不打开) 。

最后,完整的IoT系统需要用户界面。 为了使所有这些都有用,需要一种方式让用户与IoT系统进行交互(例如,具有显示湿度趋势的仪表板的Web应用程序,并允许用户手动打开或关闭灌溉系统)。

IoT平台是连接IoT系统中的所有内容的支持软件。IoT平台有助于通信,数据流,设备管理和应用功能。

IoT平台存在于第3部分中,通常是上述内容的第4部分。随着所有不同种类的硬件和不同的连接选项,需要一种使所有工作在一起的方式,这就是IoT平台所做的工作。

IoT管理系统平台帮助:连接硬件,处理不同的通讯协议,为设备和用户提供安全和身份验证和收集,可视化和分析数据与其他Web服务集成。您的业务何时应用物联网管理系统平台

由于IoT是一个系统系统,因此在所有相关领域拥有专长的组织很少见。存在物联网平台,可帮助企业克服技术挑战,而无需将其全部归咎于内部。

物联网作为未来发展重要方向,承载了世界梦想,面对新一轮信息 科技 机遇,越来越多的企业也在加大部署或者 探索 物联网,以此驱动产业转型升级,各界积极入局跑马圈地,以此抢夺时代制高点。

谷歌希望安卓 *** 作系统能能广泛应用在各种智能设备当中去,发布了Android Things物联网系统,同时,谷歌希望把强大AI能力扩展到各种物联网智能设备上,至此在今年面向智能终端首款AI芯片Edge TPU,核心用于边缘计算,让本地就具有AI处理能力。

美国另一 科技 巨头微软,希望win10无处不在,推出Win 10 IoT为全球各行各业智能设备提供服务,帮助他们迈向物联网时代。另外,Win10 IoT可以在边缘做更多工作,包括机器学习、事件处理、图像识别和人工智能,并与Azure物联网再到边缘无缝集成为Win 10 IoT设备带来了云智能和安全分析。与此同时,微软也将投入50亿美元支持物联网创新。

亚马逊则在多年前就发布了AWS IoT平台,以此抢占物联网应用市场,例如帮助工业企业提高运营效率,使用AWS IOT构建的机器学习模型可以在云中或直接在工业设备上运行,从而设备可以响应本地事件并采取智能动作。

物联网连接规模呈现高速增长态势,以LoRa和NB-IoT等低功耗广域网LPWAN通信技术发展迅猛,连接复合年增长率为109%,在城市井盖、水、电、燃气表等得到了大量应用。

随着5G通信技术的发展,万物互联得以实现,在国内,BAT以及华为等厂商战略纷纷向物联网转变,华为以大连接谋划,去撬开这个千亿级连接市场。

百度以ABC+IoT+智能边缘促进物联网在各垂直领域展开大规模应用,并赋能各行各业,促进物联网时代到来。

腾讯在今年迎来重大战略转型,被视为变革开启之年,新成立云与智慧产业事业群是腾讯战略大调整核心部门,寄托未来变革命运,拥抱产业互联网,助力产业与消费者形成更具开放性的新型连接生态。

中国移动:成立物联网公司、车联网公司,搭建物联网专网、提供专号、建设物联网设备接入管理平台和物联网应用开发平台,大力推动物联网业务展。
可以说基本上在国内有名的公司全部入局了物联网平台建设。物联网的发展,已经上升到国家战略的高度,必将有大大小小的 科技 企业受益于国家政策扶持,进入 科技 产业化的过程中。

从行业的角度来看,物联网主要涉及的行业包括电子、软件和通信,通过电子产品标识感知识别相关信息,通过通信设备和服务传导传输信息,最后通过计算机处理存储信息。

而这些产业链的任何环节都会开成相应的市场,加总在一起的市场规模就相当大,可以说,物联网产业链的细化将带来市场进一步细分,造就一个庞大的物联网产业市场。为人类的生产和生活方式带来全面的改变。

自己在电信上班,这个问题很不错。就现在成都电信物联网建设来说,已经很完善了。

一、物联网行情
首先趋势侠带大家来回顾一下,物联网概念的近期K线图走势
物联网概念K线图走势
从K线图我们可以看出,5月份以后,量能大幅度上涨,可以看做资金进入的行为,同时整体也呈现上涨态势,指数的趋势有“空转多”的迹象。值得关注的是除去6月份大跌以后,并没有影响到上涨的态势,资金也没有明显的流出以及回落的现象。那么,接下来是否还会延续上涨势头呢?甚至说可以像人工智能一样来一波大涨行情呢?
1 消息面利好
华为、阿里巴巴、腾讯等30多家知名的互联网公司与中国联通合作成立物联网产业联盟,极大的刺激了物联网的发展。同时,中国移动也不敢示弱,陆续展开物联网无线主设备采购的招标。
8月25日到8月26日,中国联通物联网生态大会在广州召开,大会上百度携手中国联通围绕双方在物联网领域的战略合作签署了相关协议,共谋“AI+物联网”大战略。
2 政策面利好
国务院印发《关于进一步扩大和升级信息消费持续释放内需潜力的指导意见》,《意见》明确指出要加快推进物联网基础设施部署,并把此项工作列为“重点任务”,由工信部、发改委具体负责,所以国家队也会不会趁机埋伏其中呢?
趋势侠来回顾下历年关于物联网的政策
2006-2014年关于物联网相关的政策
这么看,物联网已经受到国家政策与行业巨头支持。但具体产业状况如何呢?
整体来看,物联网技术目前还是处在初期阶段,根据6月份,工信部公布的《全面推进移动物联网(NB-IoT)建设发展的通知》,要求到2017年末网络覆盖主要城市,基站规模达到40万个,实现基于NB-IoT的M2M(机器对机器)的连接超过2000万,由此可见,前期投入还是较大的。
七夕节走在路上,迎面而来一个大美女,拥有物联网技术的趋势侠只需要眨眨眼睛,美女的信息就上传到了趋势侠的手机:
“年方22岁,单身狗,喜欢旅游和巧克力。”
拥有物联网技术是不是觉得妹子手到擒来,当然还有另外一种可能,信号不好的时候,眼睛眨多了,妹子觉得你眼睛要去看医生了。
那到底什么是物联网呢?接下来趋势侠详细说说看。
二、物联网概念股
物联网是什么?
物联网“Internet of things(IoT)”是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。
简单来说,物联网就是物物相连的互联网,一切物品都可以产生数据或者进行信息交流。
物联网的核心=机器&机器
三、物联网产业链
物联网是一个相对比较大的概念,而且他涵盖于各个行业。从物联网产业链来看,物联网技术大致分为三个层次:
感知层
网络层
应用层
物联网产业链
具体来看,各个细分行业的市场空间巨大,就从感知层而言,据估计到2022年物联网传感器市场将达3841亿美元,2016年至2022年之间的复合年增长率为4208%。更何况,执行器、智能装置等。
四、投资选股逻辑
之前提到过,物联网板块指数的趋势有“空转多”的迹象,中长期的投资机会值得期待。那具体我们应该如何关注物联网呢?或者说,我们要如何才能在物联网概念捞到金?
馒头逻辑1:基本面选股投资
从基本面来看,之前趋势侠有提到过消息面,可以根据中国移动与中国联通两大巨头合作的相关单位出发布局,而具体的招标进程只有业内人士了解,一般散户是无从下手的,但是趋势侠告诉大家,可以留意相关细分行业龙头,特别是曾与行业巨头有合作经历的企业。
馒头逻辑2:产业链选股投资
从产业链来看,物联网目前处在发展的初期阶段,产业发展前期的投资对感知层、网络层两大细分领域刺激较大,毕竟普及程度不够,应用层相关的市场并不大,所以可以留意产业链中上游相关龙头企业。
趋势侠还是很贴心的帮大家找出,在物联网产业链里面业绩好,绩效优的龙头股供大家选择。
现在用智能音箱就可以控制家里的东西了,都不用回家 *** 作了,真的快要什么都不用做,在家里养肉就好。
真的很期待,有没有智能选股,只要把钱放进去,下多少倍指令赚多少倍都可以哟,趋势侠又开始白日做梦了!
以上由物联传媒提供,如有侵权联系删除

各种东拼西凑来的

图(Graph)是由顶点和连接顶点的边构成的离散结构。在计算机科学中,图是最灵活的数据结构之一,很多问题都可以使用图模型进行建模求解。例如:生态环境中不同物种的相互竞争、人与人之间的社交与关系网络、化学上用图区分结构不同但分子式相同的同分异构体、分析计算机网络的拓扑结构确定两台计算机是否可以通信、找到两个城市之间的最短路径等等。

图的结构很简单,就是由顶点$V$集和边$E$集构成,因此图可以表示成$G=(V, E)$。

注意: 顶点有时也称为节点或者交点,边有时也称为链接。

无向图

我们可以说这张图中,有点集$V=\{1, 2, 3, 4, 5, 6\}$,边集$E=\{(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (4, 5), (4, 6)\}$。在无向图中,边$(u, v)$和边$(v, u)$是一样的,因此只要记录一个就行了。简而言之,对称。
有向图

也很好理解,就是加上了方向性,顶点$(u, v)$之间的关系和顶点$(v,u)$之间的关系不同,后者或许不存在。例如,地图应用中必须存储单行道的信息,避免给出错误的方向。

加权图 :

权:与图的边或弧相关的数叫做权。

与加权图对应的就是无权图,或叫等权图。如果一张图不含权重信息,我们就认为边与边之间没有差别。不过,具体建模的时候,很多时候都需要有权重,比如对中国重要城市间道路联系的建模,总不能认为从北京去上海和从北京去广州一样远(等权)。

还有很多细化的概念,比如:无向图中,任意两个顶点间都有边,称为 无向完全图 ;加权图起一个新名字,叫 网(network) ……然而,如无必要,毋增实体。

邻接(adjacency) :邻接是 两个顶点之间 的一种关系。如果图包含$(u,v)$,则称顶点$v$与顶点$u$邻接。当然,在无向图中,这也意味着顶点$u$与顶点$v$邻接。

关联(incidence) :关联是 边和顶点之间 的关系。在有向图中,边$(u,v)$从顶点$u$开始关联到$v$,或者相反,从$v$关联到$u$。注意,有向图中,边不一定是对称的,有去无回是完全有可能的。细化这个概念,就有了顶点的 入度(in-degree) 和 出度(out-degree) 。无向图中,顶点的度就是与顶点相关联的边的数目,没有入度和出度。在有向图中,我们以图1-2为例,顶点10有2个入度,$3\rightarrow10$,$11\rightarrow10$,但是没有从10指向其它顶点的边,因此顶点10的出度为0。

路径(path) :依次遍历顶点序列之间的边所形成的轨迹。注意,依次就意味着有序,先1后2和先2后1不一样。

简单路径 : 没有重复顶点的路径称为简单路径。说白了,这一趟路里没有出现绕了一圈回到同一点的情况,也就是没有 环 。

环/回路 :包含相同的顶点两次或者两次以上。图1-3中的顶点序列$<1,2,4,3,1>$,1出现了两次,当然还有其它的环,比如$<1,4,3,1>$。

简单回路/简单环: 除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路
无环图 :没有环的图,其中, 有向无环图 有特殊的名称,叫做 DAG(Directed Acyline Graph) (最好记住,DAG具有一些很好性质,比如很多动态规划的问题都可以转化成DAG中的最长路径、最短路径或者路径计数的问题)。

两个连通分支:

连通的 :无向图中每一对不同的顶点之间都有路径。如果这个条件在有向图里也成立,那么就是 强连通 的。

连通分量 :无向图中的极大连通子图。

两点强连通:在有向图G中,如果两点互相可达

强连通图: 如果有向图G的每两个顶点都强连通(任意两点互相可达),称G是一个 强连通图 。

强连通分量: 非强连通有向图的极大强连通子图,称为强连通 分量 (strongly connected components)。

关节点(割点) :某些特定的顶点对于保持图或连通分支的连通性有特殊的重要意义。如果 移除某个顶点 将使图或者分支 失去连通性 ,则称该顶点为 关节点 。(在某图中,若删除顶点V以及V相关的边后,图的一个连通分量分割为两个或两个以上的连通分量,则称顶点V为该图的一个关节点)。

桥(割边) :和关节点类似,删除一条边,就产生比原图更多的连通分支的子图,这条边就称为 割边 或者 桥 。

双连通图 :在无向连通图中,如果删除该图的任何一个结点都不能改变该图的连通性,则该图为双连通的无向图。个人理解就是一个双连通图没有割点,没有桥的图。
12 一些有趣的图概念

这一部分属于图论的内容,基础图算法不会用到,但是我觉得挺有意思的,小记如下。这部分我没看,照搬过来了

同构 4 :图看起来结构不一样,但它是一样的。假定有$G_1$和$G_2$,那么你只要确认对于$G_1$中的所有的两个 相邻点 $a$和$b$,可以通过某种方式$f$映射到$G_2$,映射后的两个点$f(a)$、$f(b)$也是相邻的。换句话说,当两个简单图同构时,两个图的顶点之间保持相邻关系的一一对应。
图1-7就展示了图的同构,这里顶点个数很少判断图的同构很简单。我们可以把v1看成u1,自然我们会把u3看出v3。用数学的语言就是$f(u_1)=v_1$,$f(u_3)=v_3$。u1的另外一个连接是到u2,v1的另外一个连接是到v4,不难从相邻顶点的关系验证$f(u_2)=v_4$,$f(u_4)=v_2$。

欧拉回路(Euler Circuit) :小学数学课本上的哥尼斯堡七桥问题,能不能从镇里的某个位置出发 不重复的经过所有桥(边)并且返回出发点 。这也就小学的一笔画问题,欧拉大神解决里这个问题,开创了图论。结论很简单:至少2个顶点的连通多重图存在欧拉回路的充要条件是 每个顶点的度都是偶数 。证明也很容易,大家有兴趣可以阅读相关资料。结论也很好理解,从某个起点出发,最后要回起点,中间无论路过多少次起点,都会再次离开,进、出的数目必然相等,故一定是偶数。

哈密顿回路(Hamilton Circuit) :哈密顿回路条件就比欧拉回路严格一点, 不能重复经过点 。你可能会感到意外,对于欧拉回路,我们可以轻而易举地回答,但是 我们却很难解决哈密顿回路问题,实际上它是一个NP完全问题 。这个术语源自1857年爱尔兰数学家威廉·罗万·哈密顿爵士发明的智力题。哈密顿的智力题用到了木质十二面体(如图1-8(a)所示,十二面体有12个正五边形表面)、十二面体每个顶点上的钉子、以及细线。十二面体的20个顶点用世界上的不同城市标记。智力题要求从一个城市开始,沿十二面体的边旅行,访问其他19个城市,每个恰好一次,最终回到第一个城市。
因为作者不可能向每位读者提供带钉子和细线的木质十二面体,所以考虑了一个 等价的问题 :对图1-8(b)的图是否具有恰好经过每个顶点一次的回路?它就是对原题的解,因为这个平面图 同构 于十二面体顶点和边。

著名的 旅行商问题(TSP) 要求旅行商访问一组城市所应当选取的最短路线。这个问题可以归结为求完全图的哈密顿回路,使这个回路的边的权重和尽可能的小。同样,因为这是个NP完全问题,最直截了当的方法就检查所有可能的哈密顿回路,然后选择权重和最小的。当然这样效率几乎难以忍受,时间复杂度高达$O(n!)$。在实际应用中,我们使用的启发式搜索等 近似算法 ,可以完全求解城市数量上万的实例,并且甚至能在误差1%范围内估计上百万个城市的问题。

关于旅行商问题目前的研究进展,可以到 >

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10466185.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存