1生物统计学的内容:统计原理、统计方法和试验设计。
2生物统计的作用:a科学地整理分析数据;b判断试验结果的可能性;c确定事物之间的相互关系;d提供试验设计的原理。
3样本容量常记为n,通常把n≤30的样本称为小样本,n>30的样本称为大样本。
4名解:(重)①生物统计:生物统计是应用概率论和数据统计的原理和方法来研究生物界数量变化的学科;
②总体:是被研究对象的全体,据所含的个体的多少,总体分为有限总体和无限总体。
③样本:是指总体内随机抽取出来若干个体所组成的单位。
④随机误差:由于许多无法控制的内在和外在的偶然因素所造成的误差,内在如个体差异,外在如环境,它影响试验的精确性。
(了)①参数:从总体计算出来的数量特征值,它是一个真值,没有抽样变动的影响,一般用平均数u,标准差s。
②统计量:是从样本计算出来的数量特征值,它是参数的估计值,受样本变动的影响,一般用拉丁字母表示,如平均数。
③系统误差:主要是试验动物的初始条件不同,试验条件相差较大,仪器不准,标准试剂未经校正,药品批次不同,药品用量与种类不符合试验计划要求,以及观察,记录抄案,计算中的错误所引起的误差,它影响试验的准确性。
④准确性:指在试验或调查中某试验指标或形状的观测值与其真值接近的程度。
⑤精确性:指试验或调查中一试验指标或形状的重复观测值彼此接近的程度。
第二章资料的整理
1统计资按性质分为:计量资料、次数资料和半定量资料。
2计量资料是指用量测方式获得的数量性状资料,即用度、量、衡等计量工具直接测量获得的数量性状资料。计量资料整理的五步骤如下:
(1)求全距,即资料中最大值和最小值之差R=Max(x)—Min(x);
(2)确定组数即按样本大小而定;
样本含量与组数
样本含量 组数
30~60 6~8
60~100 8~10
100~200 10~12
200~500 12~17
500以上 17~30
(3)确定组距,每组最大值与最小值之差记为i ,公式:组距(i)=全距(R)/组数k ;(4)确定组中值及组限,各组的最大值和最小值称为组限,最小值为下限,最大值为上限,每组的中点值称为组中值,组中值=(下限+上限)/2=下限+组距/2=上限-组距/2;(5)归组划线计数,作次数分布表。
3常用的五种统计图为长条图、圆图、线图、直方图、折线图,掌握直方图和折线图的绘制。
4原始资料的检查核对主要进行下面三性的检查:①检查资料的完整性;②检查资料的正确性;③检查资料的精确性。
5大样本资料需整理成次数分布表。
第三章资料的统计描述
1平均数包括以下五种算术平均数、中位数、众数、几何平均数及调和平均数。
2用来度量资料变异程度的指标主要有极差、方差、标准差、变异系数。
3平均数的基本性质是(1)样本各观测值与平均数之差的和为零,简述为离均差之和为;(2)样本各观测值与平均数之差的平方和为最小,简述为离均差平方和为最小。
410头母猪第一胎产仔数为9、8、7、10、12、10、11、14、8、9(头)计算10头母猪第一胎产仔数的平均数、中位数、标准差和变异系数。
解:①平均数Σx=9+8+7+10+12+10+11+14+8+9=98,n=10
②资料数据按小到大排列如:7、8、8、9、9、10、10、11、12、14
中位数
③标准差
④变异系数
第四章常用概率分布
1事件概率具有以下性质:①对于任何事件A,有0≤P(A)≤1;②必然事件的概率为1,即P(Ω)=1:③不可能的事件概率为0,即P(Ø)=0。
2(1)正态分布:若连续型随机变量X的概率分布密度函数为
其中 为平均数,σ2为方差,则称随机变量X服从正态分布,记为X~ 。相应的概率分布函数为
正态分布密度曲线为:
(2)标准正态分布::当μ=0、σ=l时,正态总体称为标准正态总体,其相应的函数表示式是,(-∞<x<+∞)
其相应的曲线称为标准曲线;标准正态总体的概率问题:
对于标准正态总体N(0,1), 是总体取值小于 的概率,
即 ,
其中 ,图中阴影部分的面积表示为概率 只要有标准正态分布表即可查表解决从图中不难发现:当 时, ;而当 时,Φ(0)=05;标准正态总体 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于 的值 是指总体取值小于 的概率,即 , .
若 ,则 .
利用标准正态分布表,可以求出标准正态总体在任意区间 内取值的概率,即直线 , 与正态曲线、x轴所围成的曲边梯形的面积 .
(3)有关概率计算的公式:
P(0≤u<u1)=Φ(u1)-05
P(u≥u1) =Φ(-u1)
P(|u|≥u1)=2Φ(-u1)
P(|u|<u1)=1-2Φ(-u1)
P(u1≤u<u2)=Φ(u2)-Φ(u1)
注:用曲线图和面积来理解记忆。
(4)关于标准正态分布要熟记下列几种常用概率:
P(-1≤u<1)=06826
P(-2≤u<2)=09545
P(-3≤u<3)=09973
P(-196≤u<196)=095
P (-258≤u<258)=099
(5)例:①已知u~N(0,1),试求: (1) P(u<-164)= (2) P (u≥258)= (3) P (|u|≥256)= (4) P(034≤u<153) =
利用(4-12)式,查附表1得:
(1) P(u<-164)=005050
(2) P (u≥258)=Φ(-258)=0024940
(3) P (|u|≥256)=2Φ(-256)=2×0005234=0010468
(4) P (034≤u<153)=Φ(153)-Φ(034)=093669-06331=030389
②已知u~N(0,1)试求:
(1) P(u<- )+P(u≥ )=010的
(2) P(- ≤u< ﹚=086的
因为附表2中的α值是:
所以
(1) P(u<- )+ P(u≥ )=1- P(- ≤u< ﹚=010=α
由附表2查得: =1644854
(2) P (- ≤u< )=086 ,α=1- P (- ≤u< )=1-086=014
由附表2查得: =1475791
对于x~N(μ,σ2),只要将其转换为u~N(0,1),即可求得相应的双侧分位数。
③已知猪血红蛋白含量x服从正态分布N(1452, ), 若P(x<11) =0025, P(x> )=0025,P(x< ) =0005,P(x> )=0005,求 , , , 。
由题意可知,α/2=0025,α=005 又因为
P(x> )=
故 P(x< =+ P(x> )= P(u<- =+ P(u> )
=1- P(- 由附表2查得: =1959964,所以
( -1452)/168=-1959964, ( -1452)/168=1959964
即 ≈1123, ≈1781。
同理 =2575829,所以
( -1452)/168=-2575829, ( -1452)/168=2575829
即 ≈1019, ≈1885。
④已知猪血红蛋白含量x服从正态分布N(1286, ), 若P(x< ) =003, P(x≥ )=003,求 , 。
由题意可知,α/2=003,α=006 又因为
P(x≥ )=
故 P(x< =+ P(x≥ )= P(u<- =+ P(u≥ )
=1- P(- ≤P< )=006=α
由附表2查得: =1880794,所以
( -1286)/133=-1880794, ( -1286)/133=1880794
即 ≈1036, ≈1536。
3 ①双侧概率(重):把随机变量X落在平均数 左右标准差σ一定倍数区间之外的概率记作σ;②单侧概率:指所求得随机变量X小于平均数 左侧标准差σ一定倍数或大于平均数 右侧标准差σ一定倍数的概率记作σ/2。
第五章假设检验
1显著性检验:就是指在对资料进行统计分析时,先提某一问题对样本所在总体的参数提出一个统计假设,然后根据从样本获得的统计量所服从的概率分布,对这一假设进行检验;其目的是主要是看样本是否来自于均数相同的总体即通过对样本的研究来对总体作出统计推断;检验的对象是在统计学中,是以样本平均数差异x1- x2的大小时样本所在的总样本平均数 1、 2是否相同作出推断。
2为什么以样本均数作为检验对象呢?是因为样本平均数具有下述特性:
(1)离均差的平方和 (xi- )2最小。说明样本平均数与样本各个观测值最接近,平均数是资料的代表数。
(2)样本平均数是总体平均数的无偏估计值,即E( )= 。
(3)根据统计学中心极限定理,样本平均数 服从或逼近正态分布。
所以,以样本平均数作为检验对象,由两个样本平均数x1和x2的差异去推断样本所属总体平均数是否相同时有依据的。
3(了) ①标准误(平均数抽样总体的标准差) 的大小反映样本平均数 的抽样误差的大小,即精确性的高低。标准误大,说明各样本平均数 间差异程度大,样本平均数的精确性低。反之, 小,说明 间的差异程度小,样本平均数的精确性高。 的大小与原总体的标准差σ成正比,与样本含量n的平方根成反比。从某特定总体抽样,因为σ是一常数,所以只有增大样本含量才能降低样本平均数 的抽样误差。在实际工作中,总体标准差σ往往是未知的,因而无法求得 。此时,可用样本标准差S估计σ。于是,以 估计 。记 为 ,称作样本标准误或均数标准误。②区别:样本标准差与样本标准误是既有联系又有区别的两个统计量, = 已表明了二者的联系。二者的区别在于:样本标准差S是反映样本中各观测值 , ,…, 变异程度大小的一个指标,它的大小说明了 对该样本代表性的强弱。样本标准误 是样本平均数 的标准差,它是 抽样误差的估计值, 其大小说明了样本间变异程度的大小及 精确性的高低。
4 ①小概率事件通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。随机事件的概率表示了随机事件在一次试验中出现的可能性大小。若随机事件的概率很小,例如小于005、001、0001,称之为小概率事件。小概率事件虽然不是不可能事件,但在一次试验中出现的可能性很小,不出现的可能性很大,以至于实际上可以看成是不可能发生的。在统计学上,把小概率事件在一次试验中看成是实际不可能发生的事件称为小概率事件实际不可能性原理,亦称为小概率原理。小概率事件实际不可能性原理是统计学上进行假设检验(显著性检验)的基本依据。
②一统计资料进行统计推断判断的原则如下:
Ⅰ、当 < ,P>005 时,差异不显著,用“NS”表示,不能否H0 ;
Ⅱ、当 ≤ ≤ ,001< P <005时,差异显著,用“”表示,接受HA,否定H0 ;
Ⅲ、当 ≥ ,P≤001时,差异极显著,用“”表示,接受HA,否定H0 。
5计算题:了解样本均数与总体均数的差异性显著检验及两样本均数的差异性显著检验;重点知道正态总体平均数 的置信区间。
例:①计算下列资料总体平均数的95%,99%置信区间,119、22、104、32、53、31、118、57、30、101、、58、48、68、70。
解:资料总体平均数的95%,99%置信区间
df=n-1=14-1=13,故 =2160, =3012
=650714 ,S=333293, 92431
所以⑴95%置信半径为 =199668
95%置信下限为 — =451046
95%置信上限为 — =850382
即该资料总体平均数u 的95%置信区间为451046≤u≤850382
⑵99%置信半径为 =278426
99%置信下限为 — =372288
99%置信上限为 — =929140
即该资料总体平均数u 的99%置信区间为372288≤u≤929140 。
②随机抽测了10只兔的直肠温度,其数据为:387、390、389、396、391、398、385、397、392、384℃。已知该品种兔直肠温度的总体平均数为 ℃,检验该样本平均数温度与 是否有显著性差异?
解:⑴提出无效假设与备择假设
H0 : =395,HA: <395
⑵计算t值 经计算得 =3909,S=04909
t=( - )/ =-26411
⑶统计推断
由df=n-1=10-1=9,查附表得临界t值
=2262 =3250, <︱t︱< ,001< P < 005
否定H0,HA接受,表明样本平均数 与已知总体平均数 差异显著
QC七大手法又称作品管七大手法,分别是:控制图、因果分析图、直方图、排列图、检查表、层别法、散布图。
1、控制图
控制图又称为管制图。用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。
控制图按其用途可分为两类,一类是供分析用的控制图,用控制图分析生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类是供管理用的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
2、因果分析图
所谓因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。其形状像鱼骨,又称鱼骨图。
因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。当出现了某种质量问题,未搞清楚原因时,可针对问题发动大家寻找可能的原因,使每个人都畅所欲言,把所有可能的原因都列出来。
3、直方图
直方图又称质量分布图,柱状图,它是表示资料变化情况的一种主要工具。用直方图可以解析出资料的规则性,比较直观地看出产品质量特性的分布状态,对於资料分布状况一目了然,便于判断其总体质量分布情况。
直方图的作用:显示质量波动的状态;较直观地传递有关过程质量状况的信息;通过研究质量波动状况之后,就能掌握过程的状况,从而确定在什么地方集中力量进行质量改进工作。
4、排列图
排列图又称为柏拉图、重点分析图、ABC分析图,排列图是分析和寻找影响质量主原因素的一种工具,其形式用双直角坐标图,左边纵坐标表示频数(如件数 金额等),右边纵坐标表示频率(如百分比表示)。
分折线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左向右排列。通过对排列图的观察分析可抓住影响质量的主原因素。
5、检查表
检查表是利用统计表对数据进行整理和初步原因分析的一种工具,其格式可多种多样,这种方法虽然较简单,但实用有效,主要作为记录或者点检所用。
6、层别法
层别法就是将性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。数据分层可根据实际情况按多种方式进行。
例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,按原材料成分进行分层,按检查手段,按使用条件进行分层,按不同缺陷项目进行分层,等等。数据分层法经常与上述的统计分析表结合使用。
7、散布图
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。这种成对的数据或许是特性一原因,特性一特性,原因一原因的关系。通过对其观察分析,来判断两个变量之间的相关关系。
假定有一对变量x 和 y,x 表示某一种影响因素,y 表示某一质量特征值,通过实验或收集到的x 和 y 的数据,可以在坐标图上用点表示出来,根据点的分布特点,就可以判断 x和 y 的相关情况。
参考资料来源:百度百科-品管七大手法
本课将继续介绍 Seaborn 中的统计图。一定要牢记,Seaborn 是对 Matplotlib 的高级封装,它优化了很多古老的做图过程,因此才会看到一个函数解决问题的局面。在统计学中,研究数据的分布情况,也是一个重要的工作,比如某些数据是否为正态分布——某些机器学习模型很在意数据的分布情况。
在 Matplotlib 中,可以通过绘制直方图将数据的分布情况可视化。在 Seaborn 中,也提供了绘制直方图的函数。
输出结果:
snsdistplot 函数即实现了直方图,还顺带把曲线画出来了——曲线其实代表了 KDE。
除了 snsdistplot 之外,在 Seaborn 中还有另外一个常用的绘制数据分布的函数 snskdeplot,它们的使用方法类似。
首先看这样一个示例。
输出结果:
① 的作用是设置所得图示的背景颜色,这样做的目的是让下面的 ② 绘制的图像显示更清晰,如果不设置 ①,在显示的图示中看到的就是白底图像,有的部分看不出来。
② 最终得到的是坐标网格,而且在图中分为三部分,如下图所示。
相对于以往的坐标网格,多出了 B 和 C 两个部分。也就是说,不仅可以在 A 部分绘制某种统计图,在 B 和 C 部分也可以绘制。
继续 *** 作:
输出结果:
语句 ③ 实现了在坐标网格中绘制统计图的效果,jpplot 方法以两个绘图函数为参数,分别在 A 部分绘制了回归统计图,在 B 和 C 部分绘制了直方图,而且直方图分别表示了对应坐标轴数据的分布,即:
我们把有语句 ② 和 ③ 共同实现的统计图,称为联合统计图。除了用 ② ③ 两句可以绘制这种图之外,还有一个函数也能够“两步并作一步”,具体如下:
输出结果:
点击上方“蓝字”,发现更多精彩。
APQP
APQP(Advanced ProductQuality Planning)即产品质量先期策划,是一种结构化的方法,用来确定和制定确保某产品使顾客满意所需的步骤。产品质量策划的目标是促进与所涉及的每一个人的联系,以确保所要求的步骤按时完成。有效的产品质量策划依赖于公司高层管理者对努力达到使顾客满意这一宗旨的承诺。
产品质量策划有如下的益处:
◆引导资源,使顾客满意;
◆促进对所需更改的早期识别;
◆避免晚期更改;
◆以最低的成本及时提供优质产品。
SPC
SPC(StatisticalProcess Control)即统计过程控制,主要是指应用统计分析技术对生产过程进行适时监控,科学区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定从而达到提高和控制质量的目的。
SPC非常适用于重复性的生产过程,它能够帮助组织对过程作出可靠的评估,确定过程的统计控制界限判断过程是否失控和过程是否有能力;为过程提供一个早期报警系统,及时监控过程的情况,以防止废品的产生,减少对常规检验的依赖性,定时以观察以及系统的测量方法替代大量检测和验证工作。
1、SPC实施意义
可以使企业:
◆降低成本
◆降低不良率,减少返工和浪费
◆提高劳动生产率
◆提供核心竞争力
◆赢得广泛客户
2、实施SPC两个阶段
分析阶段:运用控制图、直方图、过程能力分析等使过程处于统计稳态,使过程能力足够。
监控阶段:运用控制图等监控过程
3、SPC的产生
工业革命以后,随着生产力的进一步发展,大规模生产的形成,如何控制大批量产品质量成为一个突出问题,单纯依靠事后检验的质量控制方法已不能适应当时经济发展的要求,必须改进质量管理方式。于是,英、美等国开始着手研究用统计方法代替事后检验的质量控制方法。
1924年,美国的休哈特博士提出将3Sigma原理运用于生产过程当中,并发表了著名的“控制图法”,对过程变量进行控制,为统计质量管理奠定了理论和方法基础。
4、SPC的作用:
(1)确保制程持续稳定、可预测。
(2)提高产品质量、生产能力、降低成本。
(3)为制程分析提供依据。
(4)区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
FMEA
FMEA(Potential Failure Mode and EffectsAnalysis)即潜在的失效模式及后果分析,是在产品/过程/服务等的策划设计阶段,对构成产品的各子系统、零部件,对构成过程,服务的各个程序逐一进行分析,找出潜在的失效模式,分析其可能的后果,评估其风险,从而预先采取措施,减少失效模式的严重程序,降低其可能发生的概率,以有效地提高质量与可靠性,确保顾客满意的系统化活动。
FMEA种类:按其应用领域常见FMEA有设计FMEA(DFMEA)和过程FMEA(PFMEA),其它还有系统FMEA,应用FMEA,采购FMEA,服务FMEA。
MSA
MSA:MeasurementSystem Analysis的简称,MSA测量系统分析,它使用数理统计和图表的方法对测量系统的误差进行分析,以评估测量系统对于被测量的参数来说是否合适,并确定测量系统误差的主要成份。
PPAP
PPAP:生产件批准程序(Production partapproval process) ,是对生产件的控制程序,也是对质量的一种管理方法。
PPAP生产件提交保证书:主要有生产件尺寸检验报告,外观检验报告,功能检验报告, 材料检验报告;主要是制造型企业要求供应商在提交产品时做PPAP文件及首件,只有当PPAP文件全部合格后才能提交;当工程变更后还须提交报告。
检查表
检查表就是将需要检查的内容或项目一一列出,然后定期或不定期的逐项检查,并将问题点记录下来的方法,有时叫做查检表或点检表。例如:点检表、诊断表、工作改善检查表、满意度调查表、考核表、审核表、5S活动检查表、工程异常分析表等。
1、组成要素
①确定检查的项目;
②确定检查的频度;
③确定检查的人员。
2、实施步骤
①确定检查对象;
②制定检查表;
③依检查表项目进行检查并记录;
④对检查出的问题要求责任单位及时改善;
⑤检查人员在规定的时间内对改善效果进行确认;⑥定期总结,持续改进。
层别法
层别法就是将大量有关某一特定主题的观点、意见或想法按组分类,将收集到的大量的数据或资料按相互关系进行分组,加以层别。层别法一般和柏拉图、直方图等其它七大手法结合使用,也可单独使用。例如:抽样统计表、不良类别统计表、排行榜等。
实施步骤:
①确定研究的主题;
②制作表格并收集数据;
③将收集的数据进行层别;
④比较分析,对这些数据进行分析,找出其内在的原因,确定改善项目。
柏拉图
柏拉图的使用要以层别法为前提,将层别法已确定的项目从大到小进行排列,再加上累积值的图形。它可以帮助我们找出关键的问题,抓住重要的少数及有用的多数,适用于记数值统计,有人称为ABC图,又因为柏拉图的排序识从大到小,故又称为排列图。
1、分类
1)分析现象用柏拉图:与不良结果有关,用来发现主要问题。
A品质:不合格、故障、顾客抱怨、退货、维修等;
B成本:损失总数、费用等;
C交货期:存货短缺、付款违约、交货期拖延等;
D安全:发生事故、出现差错等。
2)分析原因用柏拉图:与过程因素有关,用来发现主要问题。
A *** 作者:班次、组别、年龄、经验、熟练情况等;
B机器:设备、工具、模具、仪器等;
C原材料:制造商、工厂、批次、种类等;
D作业方法:作业环境、工序先后、作业安排等。
2、柏拉图的作用
①降低不良的依据;
② 决定改善目标,找出问题点;
③可以确认改善的效果。
3、实施步骤
①收集数据,用层别法分类,计算各层别项目占整体项目的百分数;
②把分好类的数据进行汇总,由多到少进行排列,并计算累计百分数;
③绘制横轴和纵轴刻度;
④绘制柱状图;
⑤ 绘制累积曲线;
⑥记录必要事项;
⑦分析柏拉图。
要点
A、柏拉图有两个纵坐标,左侧纵坐标一般表示数量或金额,右侧纵坐标一般表示数量或金额的累积百分数;
B、柏拉图的横坐标一般表示检查项目,按影响程度大小,从左到右依次排列;
C、绘制柏拉图时,按各项目数量或金额出现的频数,对应左侧纵坐标画出直方形,将各项目出现的累计频率,对应右侧纵坐标描出点子,并将这些点子按顺序连接成线。
4、应用要点及注意事项
①柏拉图要留存,把改善前与改善后的柏拉图排在一起,可以评估出改善效果;
②分析柏拉图只要抓住前面的2~3项就可以了;
③柏拉图的分类项目不要定得太少,5~9项较合适,如果分类项目太多,超过9项,可划入其它,如果分类项目太少,少于4项,做柏拉图无实际意义;
④ 做成的柏拉图如果发现各项目分配比例差不多时,柏拉图就失去意义,与柏拉图法则不符,应从其它角度收集数据再作分析;
⑤ Y 柏拉图是管理改善的手段而非目的,如果数据项别已经清楚者,则无需浪费时间制作柏拉图;
⑥其它项目如果大于前面几项,则必须加以分析层别,检讨其中是否有原因;
⑦ 柏拉图分析主要目的是从获得情报显示问题重点而采取对策,但如果第一位的项目依靠现有条件很难解决时,或者即使解决但花费很大,得不偿失,那么可以避开第一位项目,而从第二位项目着手。
因果图
所谓因果图,又称特性要因图,主要用于分析品质特性与影响品质特性的可能原因之间的因果关系,通过把握现状、分析原因、寻找措施来促进问题的解决,是一种用于分析品质特性(结果)与可能影响特性的因素(原因)的一种工具。又称为鱼骨图。
1、分类
1)追求原因型:在于追求问题的原因,并寻找其影响,以因果图表示结果(特性)与原因(要因)间的关系;
2)追求对策型:追求问题点如何防止、目标如何达成,并以因果图表示期望效果与对策的关系。
2、实施步骤
① 成立因果图分析小组,3~6人为好,最好是各部门的代表;
②确定问题点;
③ 画出干线主骨、中骨、小骨及确定重大原因(一般从5M1E即人Man、机Machine、料Material、法Method、测Measure、环Environment六个方面全面找出原因);
④与会人员热烈讨论,依据重大原因进行分析,找到中原因或小原因,绘至因果图中;
⑤ 因果图小组要形成共识,把最可能是问题根源的项目用红笔或特殊记号标识;
⑥ 记入必要事项 。
3、应用要点及注意事项
① 确定原因要集合全员的知识与经验,集思广益,以免疏漏;
②原因解析愈细愈好,愈细则更能找出关键原因或解决问题的方法;
③有多少品质特性,就要绘制多少张因果图;
④ 如果分析出来的原因不能采取措施,说明问题还没有得到解决,要想改进有效果,原因必须要细分,直到能采取措施为止;
⑤在数据的基础上客观地评价每个因素的主要性;
⑥把重点放在解决问题上,并依5W2H的方法逐项列出,绘制因果图时,重点先放在“为什么会发生这种原因、结果”,分析后要提出对策时则放在“如何才能解决”;
Why——为何要做?(对象)
What——做什么?(目的)
Where——在哪里做?(场所)
When——什么时候做?(顺序)
Who——谁来做?(人)
How——用什么方法做?(手段)
How much——花费多少?(费用)
⑦ 因果图应以现场所发生的问题来考虑;
⑧因果图绘制后,要形成共识再决定要因,并用红笔或特殊记号标出;
⑨ 因果图使用时要不断加以改进。
散布图
将因果关系所对应变化的数据分别描绘在X-Y轴坐标系上,以掌握两个变量之间是否相关及相关的程度如何,这种图形叫做“散布图”,也称为“相关图”。
1、分类
1)正相关:当变量X增大时,另一个变量Y也增大;
2)负相关:当变量X增大时,另一个变量Y却减小;
3)不相关:变量X(或Y)变化时,另一个变量并不改变;
4)曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反而减小。;
1、实施步骤
1)确定要调查的两个变量,收集相关的最新数据,至少30组以上;
2)找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴;
3)将相应的两个变量,以点的形式标上坐标系;
4)计入图名、制作者、制作时间等项目;
5)判读散布图的相关性与相关程度。
3、应用要点及注意事项
1)两组变量的对应数至少在30组以上,最好50组至100组,数据太少时,容易造成误判;
2)通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量;
3)由于数据的获得常常因为5M1E的变化,导致数据的相关性受到影响,在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系;
4)当有异常点出现时,应立即查找原因,而不能把异常点删除;
5)当散布图的相关性与技术经验不符时,应进一步检讨是否有什么原因造成假象。
直方图
直方图是针对某产品或过程的特性值,利用常态分布(也叫正态分布)的原理,把50个以上的数据进行分组,并算出每组出现的次数,再用类似的直方图形描绘在横轴上。
1、实施步骤
1)收集同一类型的数据;
2)计算极差(全距)R=Xmax-Xmin;
3)设定组数K:K=1+323logN
数据总数
50~100
100~250
250以上
总数
6~10
7~12
10~20
4)确定测量最小单位,即小数位数为n时,最小单位为10-n;
5)计算组距h,组距h=极差R/组数K;
6)求出各组的上、下限值
第一组下限值=X min-测量最小单位10-n/27
第二组下限值(第一组上限值)=第一组下限值+组距h;
7)计算各组的中心值,组中心值=(组下限值+组上限值)/2;
8)制作频数表;
9)按频数表画出直方图。
2、直方图的常见形态与判定:
1)正常型:是正态分布,服从统计规律,过程正常;
2)缺齿型:不是正态分布,不服从统计规律;
3)偏态型:不是正态分布,不服从统计规律;
4)离岛型:不是正态分布,不服从统计规律;
5)高原型:不是正态分布,不服从统计规律;
6)双峰型:不是正态分布,不服从统计规律;
7)不规则型:不是正态分布,不服从统计规律。
控制图
1、控制图法的涵义
影响产品质量的因素很多,有静态因素也有动态因素,有没有一种方法能够即时监控产品的生产过程、及时发现质量隐患,以便改善生产过程,减少废品和次品的产出
控制图法就是这样一种以预防为主的质量控制方法,它利用现场收集到的质量特征值,绘制成控制图,通过观察图形来判断产品的生产过程的质量状况。控制图可以提供很多有用的信息,是质量管理的重要方法之一。
控制图又叫管理图,它是一种带控制界限的质量管理图表。运用控制图的目的之一就是,通过观察控制图上产品质量特性值的分布状况,分析和判断生产过程是否发生了异常,一旦发现异常就要及时采取必要的措施加以消除,使生产过程恢复稳定状态。也可以应用控制图来使生产过程达到统计控制的状态。产品质量特性值的分布是一种统计分布.因此,绘制控制图需要应用概率论的相关理论和知识。
控制图是对生产过程质量的一种记录图形,图上有中心线和上下控制限,并有反映按时间顺序抽取的各样本统计量的数值点。中心线是所控制的统计量的平均值,上下控制界限与中心线相距数倍标准差。多数的制造业应用三倍标准差控制界限,如果有充分的证据也可以使用其它控制界限。
常用的控制图有计量值和记数值两大类,它们分别适用于不同的生产过程;每类又可细分为具体的控制图,如计量值控制图可具体分为均值——极差控制图、单值一移动极差控制图等。
2、控制图的绘制
控制图的基本式样如图所示,制作控制图一般要经过以下几个步骤:
①按规定的抽样间隔和样本大小抽取样本;
②测量样本的质量特性值,计算其统计量数值;
③在控制图上描点;
④判断生产过程是否有并行。
控制图为管理者提供了许多有用的生产过程信息时应注意以下几个问题:
①根据工序的质量情况,合理地选择管理点。管理点一般是指关键部位、关健尺寸、工艺本身有特殊要求、对下工存有影响的关键点,如可以选质量不稳定、出现不良品较多的部位为管理点;
②根据管理点上的质量问题,合理选择控制图的种类;
③使用控制图做工序管理时,应首先确定合理的控制界限;
④控制图上的点有异常状态,应立即找出原因,采取措施后再进行生产,这是控制图发挥作用的首要前提;
⑤控制线不等于公差线,公差线是用来判断产品是否合格的,而控制线是用来判断工序质量是否发生变化的;
⑥控制图发生异常,要明确责任,及时解决或上报。
制作控制图时并不是每一次都计算控制界限,那么最初控制线是怎样确定的呢如果现在的生产条件和过去的差不多,可以遵循以往的经验数据,即延用以往稳定生产的控制界限。下面介绍一种确定控制界限的方法,即现场抽样法,其步骤如下:
①随机抽取样品50件以上,测出样品的数据,计算控制界限,做控制图;
②观察控制图是否在控制状态中,即稳定情况,如果点全部在控制界限内.而且点的排列无异常,则可以转入下一步;
③如果有异常状态,或虽未超出控制界限,但排列有异常,则需查明导致异常的原因,并采取妥善措施使之处在控制状态,然后再重新取数据计算控制界限,转入下一步;
④把上述所取数据作立方图,将立方图和标准界限(公差上限和下限)相比较,看是否在理想状态和较理想状态,如果达不到要求,就必须采取措施,使平均位移动或标准偏差减少,采取措施以后再重复上述步骤重新取数据,做控制界限,直到满足标准为止。
3、怎样利用控制图判断异常现象
用控制图识别生产过程的状态,主要是根据样本数据形成的样本点位置以及变化趋势进行分析和判断。
失控状态主要表现为以下两种情况:
② 样本点超出控制界限;
②样本点在控制界限内,但排列异常。当数据点超越管理界限时,一般认为生产过程存在异常现象,此时就应该追究原因,并采取对策。排列异常主要指出现以下几种情况;
③连续七个以上的点全部偏离中心线上方或下方,这时应查看生产条件是否出现了变化;
④连续三个点中的两个点进入管理界限的附近区域(指从中心线开始到管理界限的三分之二以上的区域),这时应注意生产的波动度是否过大;
⑤点相继出现向上或向下的趋势,表明工序特性在向上或向下发生着变化;
⑥点的排列状态呈周期性变化,这时可对作业时间进行层次处理,重新制作控制图,以便找出问题的原因。
控制图对异常现象的揭示能力,将根据数据分组时各组数据的多少、样本的收集方法、层别的划分不同而不同。不应仅仅满足于对一份控制图的使用,而应变换各种各样的数据收取方法和使用方法,制作出各种类型的图表,这样才能收到更好的效果。
值得注意的是,如果发现了超越管理界限的异常现象,却不去努力追究原因,采取对策,那么尽管控制图的效用很好.也只不过是空纸一张。
天行健咨询16年来专注提供精益生产管理、精益设计、六西格玛、精益六西格玛、六西格玛设计(DFSS)、TRIZ研发管理等公开课培训、企业内训、项目辅导咨询服务!
如何理解直方图左右缓坡的区别和联系,正常的直方图:中间高、两侧低,左右接近对称非正常的有五种类型:
折齿型(分组组数不当、组距确定不当)
左(右)缓坡型( *** 作中对上限或下限控制太严造成的)
孤岛型(原材料发生变化、临时他人顶班造成)
双峰型(两种不同方法或两组工人生产,两方数据混淆产生)
绝壁型(数据收集不正常、去掉下限以下的数据、存在人为因素)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)