EDI是什么的简称?什么意思?

EDI是什么的简称?什么意思?,第1张

EDI是Electronic data interchange的简称,是指电子数据交换。按照同一规定的一套通用标准格式,将标准的经济信息,通过通信网络传输,在贸易伙伴的电子计算机系统之间进行数据交换和自动处理。

一个EDI信息包括了一个多数据元素的字符串,每个元素代表了一个单一的事实,相互间由分隔符隔开。整个字符串被称为数据段,一个或多个数据段由头和尾限制定义为一个交易集,此交易集就是EDI传输单元。一个交易集通常由包含在一个特定商业文档或模式中的内容组成。

扩展资料:

应用

1、EDI用于金融、保险和商检。可以实现对外经贸的快速循环和可靠的支付,降低银行间转账所需的时间,增加可用资金的比例,加快资金的流动,简化手续,降低作业成本。

2、EDI用于外贸、通关和报关。EDI用于外贸业,可提高用户的竞争能力。EDI用于通关和报关,可加速货物通关,提高对外服务能力,减轻海关业务的压力,防止人为弊端,实现货物通关自动化和国际贸易的无纸化。

3、EDI用于制造业、运输业和仓储业。制造业利用EDI能充分理解并满足客户的需要,制订出供应计划,达到降低库存,加快资金流动的目的。运输业采用EDI能实现货运单证的电子数据传输,充分利用运输设备、仓位,为客户提供高层次和快捷的服务。

参考资料来源:百度百科-EDI

经历了互联网、移动互联网,人类正在迈入万物互联、万物智能的世界。5G、IoT、云计算、人工智能成为 社会 关注的对象,数字经济成为政策宣传的重点,各种概念和解释产生,使得当下有很多话题可以讨论。

数字经济背景下,企业竞争最核心的能力是什么。

不同行业发展数据智能的潜力有何不同?

企业如何高效进行物联网应用开发?

企业对云平台的使用体验如何

对于类似问题,阿里云IoT、ICA联盟一直希望与行业人士进行对话。上周,ICA联盟物联网万亿生态伙伴聚合沙龙在杭州举办,活动以“粘合行业碎片,共创IoT基石”为主题,以阿里云IoT云产品为话题,吸引近200名行业人士到场交流。

4位嘉宾依次上台分享

物联网需要化繁为简

物联网产业链很长,覆盖了感知层、网络层、应用层三大层次。它改变了传统的商业运作方式,让商业 社会 变得更加复杂。

首先,物联网让产品变得复杂。增加了传感器、模块等部件,需要进行更多的开发管理。

其次,物联网让需求变得复杂。企业从生产产品变成了提供个性化的服务。

就是这两个变化,让产业体会到很多新的发展痛点。

1 物联网开发过程链路极长,从获客到交付典型过程常常要经历十几个环节。

2 将软件研发、硬件研发、嵌入式研发,云产品的购买,施工/安装/维修费用计算在内,物联网开发成本极高。

3 调查表示目前78%的用户需求为定制化需求,65%的物联网软件需要定制化开发,这导致软件复用性较低。

4 设备联网、用户交互产生海量数据,众多场景亟需数据实时分析、可视化的能力,提升使用效率及用户体验。

新的形势促进了变化的发生,计算力的进步预示着满足更大的信息处理能力,更强的灵活性。

物联网平台在整个产业链中地位,也从当年行业所关注的“要不要上云”,随着企业自身数据资源日渐丰富,应用数据意愿的显著增强,过渡到了“如何高效地上云”。

物联网云平台,由此更直接地承担起IoT产业“基础设施”的角色,为物联网项目的规模化落地减负降压。

阿里云IoT 产品结构

阿里云 IoT 资深产品专家JASON CHEN从各个原子化产品角度,描绘了阿里云IoT的全局样貌。包含物联网 *** 作系统AliOS Things、边缘计算Link Edge、网络管理平台Link WAN、开发平台IoT Studio、物联网设备接入与管理、物联网数据分析、物联网市场Link Market、物联网安全Link Security等功能在内,展现阿里云为各类IoT场景和行业开发者赋能的能力。

将各个基础产品分别阐述,体现出阿里云IoT强化基础设施角色,希望阿里云的产品技术变成合作伙伴解决方案一部分的心态。再次印证阿里云智能总裁张建锋在3月阿里云峰会上所提出的“被集成”口号,阿里云的重要转变已经发生。

以下,我们就将重新认识阿里云IoT云产品。

物模型

阿里云 IoT 技术运营专家薛圆在交流中表示,ICA联盟推出物模型,定义物联网设备模型与属性。通过对任意物联网设备建模,合作伙伴共创设备数据标准模型,确保数据标准的准确性、合理性,实现设备间的互联互通互懂。

类似将拼图碎片整理成更完整的拼图模块,物模型将实现碎片数据结构化、差异模型统一化、烟囱场景联动化、软硬一体标准化的目标,帮助用户缩短开发时间、标准化开发工具。

物联网数据分析

在任何商业活动中,数据都是一种资本,数据分析是可以产生创新收益的手段。

阿里云 IoT 高级产品经理腾春艳在对物联网数据分析产品介绍时表示,阿里云为物联网开发者提供数据分析服务,覆盖了数据存储、清洗、分析及可视化等环节,有效降低数据分析门槛,助力物联网开发。

在空间数据可视化方面,阿里云IoT提供二维、三维空间数据的可视化功能,致力用数据连接真实世界。比如对智能停车场的车场现状、排队数据、收入进行分析;比如定义电子围栏,当物品超出围栏范围时,配置报警;比如在物流追踪、设备管理等物联网低频定位场景下,展示设备轨迹;比如在三维空间可视化需求下,基于阿里云物联网平台构建监控、展示、控制为重点的BIM可视化系统,实现园区、建筑、楼层、房间、设备的逐级可视化。

图:阿里云IoT数据分析产品架构

IoT Studio 物联网应用开发

如前文所述,物联网产业的痛点很多都落在了开发上。阿里云 IoT 产品专家曲文政在演讲中再次阐明IoT Studio作为物联网开发者生产力工具的产品定位与功能。

1 一站式完成云端SaaS 搭建 :用户可以通过IoT Studio轻松搭建出简单IoT SaaS系统,或构建出部分功能集成在原有的SaaS系统中

2 可视化搭建,降低定制化成本 :通过可视化搭建、服务编排的方式让一般嵌入式开发者经过简单培训也可以快速搭建出各种物联网应用;

3 提供AI 等高阶能力: 将高阶能力输出给开发者,增加营收,扩展业务边界;

4 后续提供更多解决方案模版: 通过模版的方式给用户提供即刻可用的IoT SaaS解决方案(包含硬件、嵌入式代码、页面/APP、服务)。

整体而言,IoT Studio作为开发工具,向上承接业务需求帮助用户快速搭建SaaS,向下汇聚能力将阿里体系的能力更快更好地输出给用户,是阿里云IoT产品中承上启下的关键一环。

图:IoT Studio 产品架构

结语

在 汽车 行业,定制化需求增多,产品的敏捷规划、全生命周期运维是厂商的关注焦点;在零售行业,企业追求着精准化营销的目标;在农业,看天吃饭需要向精准化种植转变……

未来的各行各业,在面对各种不确定的因素之时,都希望用数据说话,用数据管理、用数据决策。

在这样的产业愿景之中,阿里云IoT将继续践行技术和商业基础设施的角色,覆盖物联网云管边端开发环节,提供满足各类开发者需要的基础产品,助力合作伙伴创新模式,发展商机。

物联网产生大数据,大数据助力物联网
大数据时代已经来临。传感器、RFID等的大量应用,电脑、摄像机等设备和智能手机、平板电脑、可穿戴设备等移动终端的迅速普及,促使全球数字信息总量的急剧增长。物联网是大数据的重要来源,随着物联网在各行各业的推广应用,每秒钟物联网上都会产生海量数据。

数据是资源、财富。大数据分析已成为商业的关键元素,基于数据的分析、监控、信息服务日趋普遍。在各行各业中,数据驱动的企业越来越多,他们须实时吸收数据并对之进行分析,形成正确的判断和决策。大数据正成为IT行业全新的制高点,而基于应用和服务的物联网将推动大数据的更广泛运用。
由于物联网数据具有非结构化、碎片化、时空域等特性,需要新型的数据存储和处理技术。而大数据技术可支持物联网上海量数据的更深应用。物联网帮助收集来自感知层、传输层、平台层、应用层的众多数据,然后将这些海量数据传送到云计算平台进行分析加工。物联网产生的大数据处理过程可以归结为数据采集、数据存储和数据分析三个基本步骤。数据采集和存储是基本功能,而大数据时代真正的价值蕴含在数据分析中。物联网数据分析的挑战还在于将新的物联网数据和已有的数据库整合。
物联网上的大数据应用空间广阔,大数据和物联网结合充满无限可能。随着物联网、互联网、移动互联网、智能终端、大屏显示系统、云计算平台等的联合应用,物联网上的大数据可帮助人们建立智能监控模型、智能分析模型、智能决策模型等应用,深刻改变人们的生活。
智慧城市是物联网最大的应用领域,而智慧农业、智能家居、智慧物流、智能安防中的视频信息处理、智慧交通中的交通实时诱导、智慧环保中的环境监测等物联网领域都是大数据应用的“用武之地”。如:在环境监测方面,传感器借助物联网传递信息到互联网平台或移动互联网平台,实时监控环境变化。通过环境监控模型,对收集到的海量环境数据进行分析,发现环境指标变化的异常点,帮助环保部门提前预测某地环境的变化情况,对环境指标偏离正常指标值的,提前发出环境污染预警。而智能制造或“工业互联网”更是未来大数据和物联网美妙结合的经典案例。在行业应用方面,大数据和物联网的结合也会“擦出火花”。如:邮政服务可通过大数据和物联网转型为“邮政物联网”。邮政网络可配备低成本传感器,极大地增强邮政运营商收集有价值数据的能力。这个庞大的新数据来源可帮助邮政运营商提升运营能力,改善客户服务,创造新产品和服务,并为更有效率的决策提供支持。
物联网的价值在于其数据。物联网带来了突破性的技术进步,但管理大数据的问题也变得更加突出,需相关信息通信技术鼎力支撑。如:数据产生、捕捉、传递和分析,需快捷、稳定、可靠的广域网络,3G、4G、WiFi等无线通信技术应不断优化,以支持物联网及各传感器节点感知信息能力、传输能力、信息处理和存储能力等的全面提升。
物联网产生大数据,大数据助力物联网。由物联网引发的大数据潮流还将助推云计算等信息通信新技术的融合发展。

煤矿开拓设计、地测、采掘、运通、洗选、安全保障、生产管理等主要生产系统要具备自感知、自学习、自决策与自执行的基本能力。

这是煤矿智能化建设的基本要求,实现这一基本要求,依托的则是 物联网、云计算、大数据、人工智能、自动控制、移动互联网、装备机器化等现代矿山的智能开发技术。

物联网作为智能开发技术之一,不断颠覆传统技术架构,正在为IT基础设施、人工智能、区块链技术、智能机器人等领域的突破发展铺平道路。

精英数智 科技 股份有限公司

借助物联网技术

谋新求变

研发 “物联网数据服务平台”

夯实煤矿全链路数据底座

广泛应用各种感知技术

物联网上部署多种类型传感器,采集煤矿全域子系统数据,诸如煤炭、危化、燃气等企业各类子系统数据,仅煤炭行业数据就支持环境安全、灾害监测、人车安全、大型设备监控、生产设备监控、供电、运输等三十余个子系统数据的接入。

泛化融合互联网等多类网络

适应各种不同类型的网络和传输协议,可将传感器采集到的海量数据信息进行正确和及时的传输、保证数据不丢失、支持断点续传、数据传输延迟可缩小到秒级,可实现复杂网络的多级、多路数据分发传输。

智能处理数据实现感知控制

将采集数据与智能处理相结合,利用云计算、模型识别等各种智能技术,通过分析海量信息、加工和处理有意义的数据,扩充应用领域。

此外,物联网数据服务平台还以坚实的数据底座向上支撑煤矿生产的多场景需求,满足多产品智能管控的要求,诸如综采工作面、掘进工作面、瓦斯抽放管控、探放水智能监测系统、辅运系统、主运系统以及矿山综合管控系统等。

物联网数据服务平台

力破“数据孤岛”“数据烟囱”

实现数据融合互通共享

多源融合物联网数据、消除数据孤岛,做煤矿全域智慧生产联动和煤炭行业生产态势分析的数据基石。为大数据分析、人工智能提供体系化的全域数据支撑服务。

物联网数据服务平台

支撑煤矿全域数据治理工作

精英物联网数据服务平台自上线以来,完成了山西、山东、安徽省级和晋控集团级等区域的安全监控系统的数据治理。先后开展5次省级/集团级安全监控数据治理培训,在省/集团的矿端数据在线率可达90%以上;省/国家的数据在线率可达98%以上;数据质量显著提高,报警精确度大幅提升。

“物联网将是下一场工业革命的支柱

并成为近年来最具影响力的技术之一”

古老的煤炭开采行业

历经数千年 历史 的发展

正在数字经济时代焕发新生

下一步

物联网技术怎样革新破旧

引领煤矿智能化发展

我们躬身入局

一起见证这场 科技 蜕变

常见的大数据术语表(中英对照简版):
A
聚合(Aggregation) – 搜索、合并、显示数据的过程
算法(Algorithms) – 可以完成某种数据分析的数学公式
分析法(Analytics) – 用于发现数据的内在涵义
异常检测(Anomaly detection) –
在数据集中搜索与预期模式或行为不匹配的数据项。除了“Anomalies”,用来表示异常的词有以下几种:outliers, exceptions,
surprises, contaminants他们通常可提供关键的可执行信息
匿名化(Anonymization) – 使数据匿名,即移除所有与个人隐私相关的数据
应用(Application) – 实现某种特定功能的计算机软件
人工智能(Artificial Intelligence) –
研发智能机器和智能软件,这些智能设备能够感知周遭的环境,并根据要求作出相应的反应,甚至能自我学习
B
行为分析法(Behavioural Analytics) –
这种分析法是根据用户的行为如“怎么做”,“为什么这么做”,以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科,它着眼于数据中的人性化模式
大数据科学家(Big Data Scientist) – 能够设计大数据算法使得大数据变得有用的人
大数据创业公司(Big data startup) – 指研发最新大数据技术的新兴公司
生物测定术(Biometrics) – 根据个人的特征进行身份识别
B字节 (BB: Brontobytes) – 约等于1000 YB(Yottabytes),相当于未来数字化宇宙的大小。1
B字节包含了27个0!
商业智能(Business Intelligence) – 是一系列理论、方法学和过程,使得数据更容易被理解
C
分类分析(Classification analysis) – 从数据中获得重要的相关性信息的系统化过程; 这类数据也被称为元数据(meta
data),是描述数据的数据
云计算(Cloud computing) – 构建在网络上的分布式计算系统,数据是存储于机房外的(即云端)
聚类分析(Clustering analysis) –
它是将相似的对象聚合在一起,每类相似的对象组合成一个聚类(也叫作簇)的过程。这种分析方法的目的在于分析数据间的差异和相似性
冷数据存储(Cold data storage) – 在低功耗服务器上存储那些几乎不被使用的旧数据。但这些数据检索起来将会很耗时
对比分析(Comparative analysis) – 在非常大的数据集中进行模式匹配时,进行一步步的对比和计算过程得到分析结果
复杂结构的数据(Complex structured data) –
由两个或多个复杂而相互关联部分组成的数据,这类数据不能简单地由结构化查询语言或工具(SQL)解析
计算机产生的数据(Computer generated data) – 如日志文件这类由计算机生成的数据
并发(Concurrency) – 同时执行多个任务或运行多个进程
相关性分析(Correlation analysis) – 是一种数据分析方法,用于分析变量之间是否存在正相关,或者负相关
客户关系管理(CRM: Customer Relationship Management) –
用于管理销售、业务过程的一种技术,大数据将影响公司的客户关系管理的策略
D
仪表板(Dashboard) – 使用算法分析数据,并将结果用图表方式显示于仪表板中
数据聚合工具(Data aggregation tools) – 将分散于众多数据源的数据转化成一个全新数据源的过程
数据分析师(Data analyst) – 从事数据分析、建模、清理、处理的专业人员
数据库(Database) – 一个以某种特定的技术来存储数据集合的仓库
数据库即服务(Database-as-a-Service) – 部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web
Services)
数据库管理系统(DBMS: Database Management System) – 收集、存储数据,并提供数据的访问
数据中心(Data centre) – 一个实体地点,放置了用来存储数据的服务器
数据清洗(Data cleansing) – 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性
数据管理员(Data custodian) – 负责维护数据存储所需技术环境的专业技术人员
数据道德准则(Data ethical guidelines) – 这些准则有助于组织机构使其数据透明化,保证数据的简洁、安全及隐私
数据订阅(Data feed) – 一种数据流,例如Twitter订阅和RSS
数据集市(Data marketplace) – 进行数据集买卖的在线交易场所
数据挖掘(Data mining) – 从数据集中发掘特定模式或信息的过程
数据建模(Data modelling) – 使用数据建模技术来分析数据对象,以此洞悉数据的内在涵义
数据集(Data set) – 大量数据的集合
数据虚拟化(Data virtualization) –
数据整合的过程,以此获得更多的数据信息,这个过程通常会引入其他技术,例如数据库,应用程序,文件系统,网页技术,大数据技术等等
去身份识别(De-identification) – 也称为匿名化(anonymization),确保个人不会通过数据被识别
判别分析(Discriminant analysis) –
将数据分类;按不同的分类方式,可将数据分配到不同的群组,类别或者目录。是一种统计分析法,可以对数据中某些群组或集群的已知信息进行分析,并从中获取分类规则。
分布式文件系统(Distributed File System) – 提供简化的,高可用的方式来存储、分析、处理数据的系统
文件存贮数据库(Document Store Databases) – 又称为文档数据库(document-oriented database),
为存储、管理、恢复文档数据而专门设计的数据库,这类文档数据也称为半结构化数据
E
探索性分析(Exploratory analysis) –
在没有标准的流程或方法的情况下从数据中发掘模式。是一种发掘数据和数据集主要特性的一种方法
E字节(EB: Exabytes) – 约等于1000 PB(petabytes), 约等于1百万 GB。如今全球每天所制造的新信息量大约为1
EB
提取-转换-加载(ETL: Extract, Transform and Load) –
是一种用于数据库或者数据仓库的处理过程。即从各种不同的数据源提取(E)数据,并转换(T)成能满足业务需要的数据,最后将其加载(L)到数据库
F
故障切换(Failover) – 当系统中某个服务器发生故障时,能自动地将运行任务切换到另一个可用服务器或节点上
容错设计(Fault-tolerant design) – 一个支持容错设计的系统应该能够做到当某一部分出现故障也能继续运行
G
游戏化(Gamification) –
在其他非游戏领域中运用游戏的思维和机制,这种方法可以以一种十分友好的方式进行数据的创建和侦测,非常有效。
图形数据库(Graph Databases) –
运用图形结构(例如,一组有限的有序对,或者某种实体)来存储数据,这种图形存储结构包括边缘、属性和节点。它提供了相邻节点间的自由索引功能,也就是说,数据库中每个元素间都与其他相邻元素直接关联。
网格计算(Grid computing) – 将许多分布在不同地点的计算机连接在一起,用以处理某个特定问题,通常是通过云将计算机相连在一起。
H
Hadoop – 一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。
Hadoop数据库(HBase) – 一个开源的、非关系型、分布式数据库,与Hadoop框架共同使用
HDFS – Hadoop分布式文件系统(Hadoop Distributed File
System);是一个被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统
高性能计算(HPC: High-Performance-Computing) – 使用超级计算机来解决极其复杂的计算问题
I
内存数据库(IMDB: In-memory) –
一种数据库管理系统,与普通数据库管理系统不同之处在于,它用主存来存储数据,而非硬盘。其特点在于能高速地进行数据的处理和存取。
物联网(Internet of Things) – 在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连。
J
法律上的数据一致性(Juridical data compliance) –
当你使用的云计算解决方案,将你的数据存储于不同的国家或不同的大陆时,就会与这个概念扯上关系了。你需要留意这些存储在不同国家的数据是否符合当地的法律。
K
键值数据库(KeyValue Databases) –
数据的存储方式是使用一个特定的键,指向一个特定的数据记录,这种方式使得数据的查找更加方便快捷。键值数据库中所存的数据通常为编程语言中基本数据类型的数据。
L
延迟(Latency) – 表示系统时间的延迟
遗留系统(Legacy system) – 是一种旧的应用程序,或是旧的技术,或是旧的计算系统,现在已经不再支持了。
负载均衡(Load balancing) – 将工作量分配到多台电脑或服务器上,以获得最优结果和最大的系统利用率。
位置信息(Location data) – GPS信息,即地理位置信息。
日志文件(Log file) – 由计算机系统自动生成的文件,记录系统的运行过程。
M
M2M数据(Machine2Machine data) – 两台或多台机器间交流与传输的内容
机器数据(Machine data) – 由传感器或算法在机器上产生的数据
机器学习(Machine learning) –
人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。
MapReduce – 是处理大规模数据的一种软件框架(Map: 映射,Reduce: 归纳)。
大规模并行处理(MPP: Massively Parallel Processing) –
同时使用多个处理器(或多台计算机)处理同一个计算任务。
元数据(Metadata) – 被称为描述数据的数据,即描述数据数据属性(数据是什么)的信息。
MongoDB – 一种开源的非关系型数据库(NoSQL database)
多维数据库(Multi-Dimensional Databases) – 用于优化数据联机分析处理(OLAP)程序,优化数据仓库的一种数据库。
多值数据库(MultiValue Databases) – 是一种非关系型数据库(NoSQL),
一种特殊的多维数据库:能处理3个维度的数据。主要针对非常长的字符串,能够完美地处理HTML和XML中的字串。
N
自然语言处理(Natural Language Processing) –
是计算机科学的一个分支领域,它研究如何实现计算机与人类语言之间的交互。
网络分析(Network analysis) – 分析网络或图论中节点间的关系,即分析网络中节点间的连接和强度关系。
NewSQL – 一个优雅的、定义良好的数据库系统,比SQL更易学习和使用,比NoSQL更晚提出的新型数据库
NoSQL –
顾名思义,就是“不使用SQL”的数据库。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
O
对象数据库(Object Databases) –
(也称为面象对象数据库)以对象的形式存储数据,用于面向对象编程。它不同于关系型数据库和图形数据库,大部分对象数据库都提供一种查询语言,允许使用声明式编程(declarative
programming)访问对象
基于对象图像分析(Object-based Image Analysis) –
数字图像分析方法是对每一个像素的数据进行分析,而基于对象的图像分析方法则只分析相关像素的数据,这些相关像素被称为对象或图像对象。
*** 作型数据库(Operational Databases) –
这类数据库可以完成一个组织机构的常规 *** 作,对商业运营非常重要,一般使用在线事务处理,允许用户访问 、收集、检索公司内部的具体信息。
优化分析(Optimization analysis) –
在产品设计周期依靠算法来实现的优化过程,在这一过程中,公司可以设计各种各样的产品并测试这些产品是否满足预设值。
本体论(Ontology) – 表示知识本体,用于定义一个领域中的概念集及概念之间的关系的一种哲学思想。(译者注:
数据被提高到哲学的高度,被赋予了世界本体的意义,成为一个独立的客观数据世界)
异常值检测(Outlier detection) –
异常值是指严重偏离一个数据集或一个数据组合总平均值的对象,该对象与数据集中的其他它相去甚远,因此,异常值的出现意味着系统发生问题,需要对此另加分析。
P
模式识别(Pattern Recognition) – 通过算法来识别数据中的模式,并对同一数据源中的新数据作出预测
P字节(PB: Petabytes) – 约等于1000 TB(terabytes), 约等于1百万 GB
(gigabytes)。欧洲核子研究中心(CERN)大型强子对撞机每秒产生的粒子个数就约为1 PB
平台即服务(PaaS: Platform-as-a-Service) – 为云计算解决方案提供所有必需的基础平台的一种服务
预测分析(Predictive analysis) –
大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为,例如某人很可能会买某些商品,可能会访问某些网站,做某些事情或者产生某种行为。通过使用各种不同的数据集,例如历史数据,事务数据,社交数据,或者客户的个人信息数据,来识别风险和机遇
隐私(Privacy) – 把具有可识别出个人信息的数据与其他数据分离开,以确保用户隐私。
公共数据(Public data) – 由公共基金创建的公共信息或公共数据集。
Q
数字化自我(Quantified Self) – 使用应用程序跟踪用户一天的一举一动,从而更好地理解其相关的行为
查询(Query) – 查找某个问题答案的相关信息
R
再识别(Re-identification) – 将多个数据集合并在一起,从匿名化的数据中识别出个人信息
回归分析(Regression analysis) –
确定两个变量间的依赖关系。这种方法假设两个变量之间存在单向的因果关系(译者注:自变量,因变量,二者不可互换)
RFID – 射频识别; 这种识别技术使用一种无线非接触式射频电磁场传感器来传输数据
实时数据(Real-time data) – 指在几毫秒内被创建、处理、存储、分析并显示的数据
推荐引擎(Recommendation engine) – 推荐引擎算法根据用户之前的购买行为或其他购买行为向用户推荐某种产品
路径分析(Routing analysis) –
针对某种运输方法通过使用多种不同的变量分析从而找到一条最优路径,以达到降低燃料费用,提高效率的目的
S
半结构化数据(Semi-structured data) –
半结构化数据并不具有结构化数据严格的存储结构,但它可以使用标签或其他形式的标记方式以保证数据的层次结构
情感分析(Sentiment Analysis) – 通过算法分析出人们是如何看待某些话题
信号分析(Signal analysis) – 指通过度量随时间或空间变化的物理量来分析产品的性能。特别是使用传感器数据。
相似性搜索(Similarity searches) – 在数据库中查询最相似的对象,这里所说的数据对象可以是任意类型的数据
仿真分析(Simulation analysis) –
仿真是指模拟真实环境中进程或系统的 *** 作。仿真分析可以在仿真时考虑多种不同的变量,确保产品性能达到最优
智能网格(Smart grid) – 是指在能源网中使用传感器实时监控其运行状态,有助于提高效率
软件即服务(SaaS: Software-as-a-Service) – 基于Web的通过浏览器使用的一种应用软件
空间分析(Spatial analysis) – 空间分析法分析地理信息或拓扑信息这类空间数据,从中得出分布在地理空间中的数据的模式和规律
SQL – 在关系型数据库中,用于检索数据的一种编程语言
结构化数据(Structured data)
-可以组织成行列结构,可识别的数据。这类数据通常是一条记录,或者一个文件,或者是被正确标记过的数据中的某一个字段,并且可以被精确地定位到。
T
T字节(TB: Terabytes) – 约等于1000 GB(gigabytes)。1 TB容量可以存储约300小时的高清视频。
时序分析(Time series analysis) –
分析在重复测量时间里获得的定义良好的数据。分析的数据必须是良好定义的,并且要取自相同时间间隔的连续时间点。
拓扑数据分析(Topological Data Analysis) –
拓扑数据分析主要关注三点:复合数据模型、集群的识别、以及数据的统计学意义。
交易数据(Transactional data) – 随时间变化的动态数据
透明性(Transparency) – 消费者想要知道他们的数据有什么作用、被作何处理,而组织机构则把这些信息都透明化了。
U
非结构化数据(Un-structured data) – 非结构化数据一般被认为是大量纯文本数据,其中还可能包含日期,数字和实例。
V
价值(Value) – (译者注:大数据4V特点之一)
所有可用的数据,能为组织机构、社会、消费者创造出巨大的价值。这意味着各大企业及整个产业都将从大数据中获益。
可变性(Variability) – 也就是说,数据的含义总是在(快速)变化的。例如,一个词在相同的推文中可以有完全不同的意思。
多样(Variety) – (译者注:大数据4V特点之一)
数据总是以各种不同的形式呈现,如结构化数据,半结构化数据,非结构化数据,甚至还有复杂结构化数据
高速(Velocity) – (译者注:大数据4V特点之一) 在大数据时代,数据的创建、存储、分析、虚拟化都要求被高速处理。
真实性(Veracity) – 组织机构需要确保数据的真实性,才能保证数据分析的正确性。因此,真实性(Veracity)是指数据的正确性。
可视化(Visualization) –
只有正确的可视化,原始数据才可被投入使用。这里的“可视化”并非普通的图型或饼图,可视化指是的复杂的图表,图表中包含大量的数据信息,但可以被很容易地理解和阅读。
大量(Volume) – (译者注:大数据4V特点之一) 指数据量,范围从Megabytes至Brontobytes
W
天气数据(Weather data) – 是一种重要的开放公共数据来源,如果与其他数据来源合成在一起,可以为相关组织机构提供深入分析的依据
X
XML数据库(XML Databases) –
XML数据库是一种以XML格式存储数据的数据库。XML数据库通常与面向文档型数据库相关联,开发人员可以对XML数据库的数据进行查询,导出以及按指定的格式序列化
Y
Y字节 (Yottabytes) – 约等于1000 ZB (Zettabytes),
约等于250万亿张DVD的数据容量。现今,整个数字化宇宙的数据量为1 YB, 并且将每18年翻一番。
Z
Z字节 (ZB: Zettabytes) – 约等于1000 EB (Exabytes), 约等于1百万
TB。据预测,到2016年全球范围内每天网络上通过的信息大约能达到1 ZB。
附:存储容量单位换算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字节)
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 Geopbyte

物联网云服务是物联网世界的核心,主要包括四个层次:感知层、传输层、平台服务层、应用服务层。其中,物联网云平台是物联网网络架构和产业链条中的关键枢纽。
其向下接入分散的物联网传感层,汇集传感数据;向上则是面向应用服务提供商,提供应用开发的基础性平台和面向底层网络的统一数据接口,支持具体的基于传感数据的物联网应用。
此外,还可通过它实现对终端设备和资产的“管、控、营”一体化,并为各行各业提供通用的服务能力,如数据路由、数据处理与挖掘、仿真与优化、业务流程和应用整合、通信管理、应用开发、设备维护服务等。
物联网产业发展至今,行业应用需求逐步崛起,底层技术逐步成熟,因此发展完善的物联网云平台技术,从而刺激下游应用的部署,成为推动产业发展的关键。

物联网是什么东西

物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。[

1]顾名思义,物联网就是物物相连的互联网。这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;

其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。 物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。物联网的实践最早可以追溯到1990年施乐公司的网络可乐贩售机—Neorked Coke Machine。 物联网用途广泛,遍及智能交通、环境保护、 工作、公共安全、平安家居、智能消防等多个领域。

简单说就是商品的信息更容易被消费者熟悉的一种电子商务!物联网的高级阶段就是商品的物理特性(如质感,硬度等)都能被感知!希望能帮到你

物联网(Inter of Things,简称IoT)是近几年新兴的概念。它有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。应用创新是物联网发展的核心,以用户体验为核心的创新20是物联网发展的灵魂。
详细参考::iotofweek/2015-12/ART-132216-8120-29047695

物联网的RFID是什么东西?

RFID(射频识别)是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种环境之下。RFID技术可同时识别多个标签, *** 作快捷方便。
RFID有以下三大特点:第一,可以标识每个物体,而不像条形码是用来识别一类物体;第二,可以非接触远距离地同时对多个物体进行识读,而条形码只能在非常近的距离一个一个地识读;第三,储存的信息量非常大。
RFID系统一般由电子标签(Tag)、读写器(Reader)和天线(Antenna)3部分组成
其工作原理为:当标签(一般为无源标签或被动标签,Passive Tag)进入磁场后,接收读写器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息;或者标签(有源标签或主动标签,Active
Tag)主动发送某一频率的信号,读写器读取信息并解码后,送至后台管理信息系统进行数据处理。

物联网是什么东西,大数据又是啥?

童鞋你好!
学校好不好就不太清楚,侧面了解了解,但专业很不错。
物联网是以计算机科学为基础,包括网络、电子、射频、感应、无线、人工智能、条码、云计算、自动化、嵌入式等技术为一体的综合性技术及应用,它要让孤立的物品(冰箱、汽车、设备、家具、货品等等)接入网络世界,让它们之间能相互交流、让我们可以通过软件系统 *** 纵himer、让himer鲜活起来。
科技创新改变生活,物联网以及延伸的人工智能必将为未来带来自便利的美好生活。
人类总是在追求自便利的美好生活,物联网很有前瞻性。
下一波的IT浪潮就是云计算、物联网、人工智能、生物技术。
ITJOB告诉你,好好把握学习这个专业的机会,目前物联网处于发展初期,等你毕业刚好是大展拳脚的好时机!

电信物联网卡是什么东西?

电信物联网业务是面向物联网用户提供的采用物联网专用的物联网卡号段作为MSISDN的移动通信接入业务,通过专用网元设备支持短信和GPRS等基础通信服务,并提供通信状态管理和通信鉴权等智能通道服务,默认开通物联网专用的短信接入服务号和物联网专用APN。物联网卡办理可以找中互联流量,不止电信物联网卡,还有移动和联通物联网卡。

物联网是什么东东?

简单讲就是物和物的联网,在每个物品中增加智能芯片以及传感器,可以将信息直接采集或者执行你需要的 *** 作,比如先进点的空调里面就集成了温度传感器以及控制芯片,将这两个连接到网络中你就能通过手机遥控家里的空调再回到家之前调整到26度。

说真的,氦氪科技出现,让物联网变得简单容易些。其呈现出来的智能物联网模式,才是最大的亮点了。

物联网=互联网+各类传感器(RFID,条码,温湿度传感器,位移,电压,震动等等传感器)。
物联网是互联网技术的延伸,是互联网之后又一更宏大的技术革命 在各个领域各个行业都会有大量的应用。
看到对您有帮助请点赞,您的鼓励是我用心帮助大家的动力!

物联网是新一代信息技术的重要组成部分。其英文名称是“The Inter of things”。由此,顾名思义,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10485917.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存