“数字新基建”主要围绕着ABCD四方面发展,A是人工智能、B是区块链、C是云、D是大数据,随着5G的快速推进,给ABCD插上翅膀,算力的不断下沉,将会涌现很多有趣的垂直行业应用场景,为边缘端更好实现技术赋能提供了价值。
以当前比较热门的自动驾驶来说,同样是边缘计算最重要的应用场景之一。在自动驾驶场景中,车辆需要做到比驾驶员更快的响应决策速度,也就是说最多只有零点几毫秒时间,同时还要能够自动感知到行车过程中周围车辆、行人、甚至整条路况的实时信息。如果按传统以云中心集中计算为主的决策架构,这对于要做到和人一样反应的自动驾驶来说时间太长了,所以如果没有边缘计算,如果数据的感知处理、控制的决策不能在车辆上本地进行,自动驾驶就会成为空中楼阁。
通过边缘计算的应用,以车辆本身的边缘计算,以及车路协同形式,在道路两旁会部署一些小型智能服务器,就近接收来自周围车辆的信息流,迅速作出响应和决策,同时这些小型的智能服务器也能接收来自云中心下达的控制指令,从而达到车路协同要求。未来甚至红绿灯可能会消失,因为道路知道周围车辆的速度、距离等信息,能够实时对周围车辆发出控制指令,车辆也能够根据来自道路的消息,以及车辆自身的边缘计算实时做出决策,整个过程将实现非常高效的协同。
目前许多智能化的改造,边缘计算已经能够积极的应用在许多场景之上,例如智能驾驶、智能工厂、智能电网、智能家居、智能建筑,很多都是边缘计算的场景。
再举例来说,电网有很多高压线、变电箱,人力的运维成本太大、危险系数也很高,传统的故障巡检机制网络传输带宽消耗大、故障告警处理不实时、而且电力系统数据本身关系到国计民生,数据传输过程中的安全性极其重要。
落地边缘计算之后,借助于边缘智能技术,可以在设备边缘侧几乎准实时地自动检测出问题出现的具体位置,比方说在配电房内安装边缘计算装置,布置AI模型,边缘计算装置连接配电房里面所有的电力设备,实时采集每一个设备的状态,利用高清夜视摄像头,还可以对烟雾、起火进行实时AI推理、故障告警和处理,效率能够得到极大的提升,同时由于大部分数据都在边缘侧本地处理,无需全部传输上报至云端集中处理,因而极大降低了网络传输流量、减少了数据在传输过程中的暴露面,数据安全性也自然得到了提升。物联网平台为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑设备数据采集上云;向上提供云端API,指令数据通过API调用下发至设备端,实现远程控制。
物联网平台也提供了其他增值能力,如设备管理、规则引擎、数据分析、边缘计算等,为各类IoT场景和行业开发者赋能。
如下是共享单车基于物联网平台的解决方案。
物联网平台提供边缘计算能力,支持在离设备最近的位置构建边缘计算节点处理设备数据。
在断网或弱网情况下,边缘计算可缓存设备数据,网络恢复后,自动将数据同步至云端。
提供多种业务逻辑的开发和运行框架,包括场景联动、函数计算和流式计算,各框架均支持云端开发、动态部署。
边缘计算能力允许在最靠近设备的地方构建边缘计算节点,过滤清洗设备数据,并将处理后的数据上传至云平台。
物联网应用可广泛应用于:智能生活、智能工业、智能楼宇、环境保护、农业水利、能源监控等环境。计算平台主要涉及:
开发者使用设备接入SDK,将非标设备转换成标准物模型,就近接入网关,从而实现设备的管理和控制。
设备连接到网关后,网关可以实现设备数据的采集、流转、存储、分析和上报设备数据至云端,同时网关提供规则引擎、函数计算引擎,方便场景编排和业务扩展。
设备数据上传云端后,可以结合云功能,如大数据、AI学习等,通过标准API接口,实现更多功能和应用。
物联网 (IoT) 设备必须连接互联网。通过连接到互联网,设备就能相互协作,以及与后端服务协同工作。互联网的基础网络协议是 TCP/IP。MQTT(Message Queue Telemetry Transport,消息队列遥测传输) 是基于 TCP/IP 协议栈而构建的,已成为 IoT 通信的标准。现今世界网络和数据普及,不单止智能手机能连接网络,就连手表,闹钟,家电等日常用品,也能即时在网络中提取资讯,并配合环据数据作出分析,将最好的体验反馈给 用家。而透过网络来连接人,流程,资讯和装置这个概念,亦是我们平常所说的物联网(物联网,又名物联网)。
承接上文介绍了雾计算的简单的应用和由来,下文将会介绍物联网的一个重要技术 - 边缘计算(Edge computing)。下文将会阐述边缘计算的由来,并介绍它与物联网的关系,而且会利用无人驾驶作为用例,介绍云计算的短处和边缘计算的应用。
先定义一下边缘计算(wikepedia,2019):
这里提到很多艰涩的专业名词,例如是“分散式运算”,“节点”等,其实只是描述:边缘技术是一种技术将大型应用程式的一部分转移到(即分散式运算)日常设备中处理(即边缘节点中)。
在云计算的典型结构中(如上图),通常可分为“云(云层) - 网(雾层) - 端(边缘)”三层。“端”这一层覆盖所有终端的应用程式,亦通常是被管理的角色。当云计算一计算出结果,就会到透过“网”层,将指令发送到“端”层的应用程式执行,而应用程式收到数据后,则会发送到“云”层作计算。
而边缘计算则可以想像为给予“端”层一定程度的“自治”。在边缘计算的架构中,终点被赋予简单的存储和计算能力(与雾计算不同,这里重点是“简单”的功能) ,令它能偶尔脱离云的管理,并根据环境数据作出回应。
增加终端系统简单的计算和存取能力看似一小步,但其实这个布局有着莫大的好处,当中包括:
- 低延迟:数据由近场产生,能快速回应
- 独立性:在没有网络连接下,系统亦能运作
- 合规性:无需传送用户资料,保护个人数据
- 简化数据:终端先处理部份数据,数据简化后才向云服务器传输
- 安全性:数据传输减少,减少网络安全风险
无人驾驶是边缘计算其中一个经典用例,亦是一个很好例子说明云计算的短处和为什么需要边缘计算。
下图展示的是常用的云计算架构,当中包括1)一架智能汽车(客户端),并且正在使用无人驾驶功能,2)互联网(Internet),用作传输数据,以及3)云服务(云计算)服务器),用作提供无人驾驶服务。
假设汽车正在以60ms-1的速度行驶,并在起始位置感测到前方3m有阻碍物。由于汽车正在使用云计算的架构,汽车本身并没有分析的功能,汽车会将感测到的影像 传送到云服务器中作分析(步骤1)。
很不幸地,由于汽车现在在北区甚远,信息在005s后才能到云服务 无上停驶,但也要经过005s才能将指令发送到汽车上执行(步骤2)。
在这段发送信息到回收指令的过程中(~01s),汽车会继续以均速行驶(60ms-1),并到6m后(= 60ms-1×01s)才会收到指令停下来 。而且会撞到在3m前的路人,酿成车祸。
汽车在起始位置感测到前方3m有阻碍物,会立刻执行停车指令(步骤1)。然后再发送影像和决策内容到云服务器中作进阶分析(步骤2),以改善无人驾驶性能。 (注:这里看似与雾计算方式相似,但在过程中,应用程式没有作任何的数据分析,只根据感应器内容作出回应。若然是雾计算的话,感应器信息会发送到雾服务中,再作分析,然后通知终端设备作出回应。)
由此可见,云服务器距离数据产生的位置较远,因此会造成较大的延迟。而无人驾驶这些需要实时作出决策的活动,则很大机会需要使用边缘计算,使计算的服务靠近产生数据的源头,做到计算更接近实际行动。
随着科技的进步,数据传输速度的快速提升,不少日常物品,例如是家用电器,车辆等,都已经嵌入感测器,并透过网络接结与互联网交换资讯,形成了庞大的物件网络(即物联网)。
物件会在运行时会收集到大量的环境数据。有些人会问,为什么不把数据都在本地(local drive)处理,其他数据再传到云服务做储存。这可能是其中一个可以实行的方法,但如果所有数据都在本地处理,物件本身要设有很多的存储装置和处理服务器。这会大大增加电力消秏和物件重量,增加成本。
因此,最好的方法是结合云计算和边缘计算的优势做出最佳的配置。在一些决定物件重大安全性的事件(例如如上文无人驾驶例子的刹车)可将决定的主导权放到边缘上,其他没有急切性的事情,则放到云服务器低成本集中处理。透过云与边缘的良好分工,大大减少成本,亦能提高运算效率。作者:黄还青;华为高级产业发展经理,ECC需求与总体组副主席。
首先我们认为边缘计算的兴起应该是在过去三四年,之所以兴起大背景是因为实体经济的数字化转型。这波实体经济数字化以万物感知、万物互联、万物智能为特征,这三方面的特征仅仅依靠云计算是没办法特别好的解决,比如实时性、带宽、安全、隐私等等一些问题,在这样背景下,边缘计算逐渐兴起。
我们分享几个行业对于边缘计算的需求特征和大背景下浮现出来关于边缘计算的机会。先看一下工业,1工业40以及智能制造大背景下,推动了工业界原来传统的架构重构:云+边缘+设备三层扁平互联架构。在这个过程中,边缘计算为什么有价值?边缘计算核心是解决了传统五层架构里面网络孤岛、数据孤岛与业务孤岛的问题,同时更好的支撑柔性制造,并且带来从技术到商业各个方面价值创新的能力。
2OPC-UA overTSN向下渗透,边缘计算碎片化的问题在工业界尤其明显。比如工业界目前一个比较好的解决方案,能解决边缘计算碎片化的方案。OPC-UA over TSN 原来更多是在PLC之间及以上的层次。去年11月份在 OPC基金会下面成立FLC工作组,工作组目的是 PLC以下的层次如何利用OPC UA over TSN 技术需求,研究明白,协议规范,定义清楚。
其实,工业界大背景下,施耐德这样的巨头已经围绕大的趋势,展开一些 探索 ,我们看到施耐德已经明确了要基于 云+边缘控制+产品 三个层次去重构原有的架构,特意强调边缘控制层的智能化是非常核心的点,提到了边缘计算的主要形态,包括本地设备和边缘云;同时和华为开展持续深入的合作。
智慧城市,从08年IBM提出了智慧地球概念后,智慧城市的建设在全球成为了个热点;17年中国发布了数字中国战略,引爆了新一轮智慧城市的建设,边缘侧拥有最全的诉求,所以新一轮智慧城市的建设需要边缘智能、边缘协同、边缘能力的支撑;同时,5G的发展会极大推动城市的万物互联,这也将极大促进边缘计算产业发展。例如河长巡河场景下,利用边缘计算实时采集河湖动态信息,通过AI辅助进行监测数据处理,污染预警溯源;智慧路灯场景下,借助边缘计算实时监控路灯运行状态,辅助路灯开、关、亮度管理,本地化运营团队进行针对性维护,精准高效;雪亮工程场景下,边缘计算不仅能够进行边缘预处理,剔除“垃圾”信息,减少上传的视频数据,还能够使边缘设备更加“聪明”。
全球主流运营商看重边缘计算产业机会点,都在拓耕边缘计算领域,从管道经营到算力经营,完善2C业务体验,强化2B市场能力。
中国联通致力于构建一个开放的,开源的Edge-Cloud服务PaaS平台,以灵活分配计算,存储,网络和加速资源,旨在加速边缘服务的孵化和推广。
1、发布CUBE-Edge20白皮书;
2、中国联通将大力发展边缘DC,启动全国范围内15个省市的规模试点;
3、主导的《IoT requirements for Edge computing》国际标准项目立项
中国移动将边缘计算上升为公司战略与5G并列。中移动将边缘计算上升为公司战略与5G并列,推动中国移动未来从管道经营(流量变现)扩展到算力经营(服务变现)”
1、成立中国移动边缘计算开放实验室;
2、发布中国移动边缘计算技术白皮书;
3、宣布Pioneer300计划。
美国电信公司AT&T将边缘计算定位其5G战略三大支柱之一,AT&T已经为移动和固定无线应用接入边缘计算,可以使用LTE或5G连接进行部署。主导发起了Akraino开源,通过开源加快边缘计算生态建设和商用部署。
全球移动通信系统协会,简称GSMA,全球移动通信系统协会(GSMA)成立于1987年,是全球移动通信领域的行业组织,目前其成员已包括220个国家的近800家移动运营商以及230多家更为广泛的移动生态系统中的企业,其中包括手机制造商、软件公司、设备供应商、互联网公司以及金融服务、医疗、媒体、交通和公共事业等领域的企业。GSMA认为边缘计算是运营商未来重要发展方向:
1、Edge Cloud如何帮助运营商Cloud VR/AR等新型业务降低部署成本,加快部署速度;
2、边缘计算如何推动当前智慧城市,智能制造中图像处理能力,
GSMA动态:
1、GSMA在MWC2019发布了边缘计算白皮书:Distributed Edge Cloud: Definitions,
Dynamics AndDrivers,
2、GSMA计划通过推动边缘计算典型PoC来加速边缘计算在运营商的应用。
GSMA定义的2大边缘计算形态
运营商边缘计算核心技术:
1、多形态I硬件(边缘云,一体机形态,异构数据处理云化网关等);
2、轻量级云原生PaaS(微服务,Serveless等);
3、安全(物理安全,平台安全,应用安全等)。
边缘计算技术方向往那些方向走?
边缘计算需要与云计算协同,才能最大化增强实现彼此的应用价值,这个得到产业界的广泛认同,但是边云协同的价值和内涵到底是什么,涉及到那些方面的协同?这些问题在产业界一直缺乏共识。去年,ECC产业联盟试图从主要场景出发,初步梳理了边云协同的全视图,我们认为边云协同大体上会涉及三层六类协同,也就是从IaaS 到 PaaS 到SaaS三个层次,边缘侧三个层次和云侧三个层次一定有相互协同工作,落实到具体场景中,不见得所有业务场景都会包括,我们这个六类应该是目前阶段理解边云协同的全视图。
边缘计算正从10走向20,如果说10更偏向概念定义,主要目的是推动产业共识;20则更加关心技术和能力构建,从而促进边缘计算的实践落地。边缘计算20核心观点包括落地形态,我们认为主要是边缘云和云化网关两种形态,当然细分来说还有很多。
边缘云主要提供近现场的综合计算能力,支撑智慧园区、平安城市、智能制造等场景,将中心云的能力拉近到边缘,是下一步云计算创新突破的增长点。
云化网关是企业/行业数据的汇聚节点,是网关设备基于云计算技术的演进,主要通过多样连接、实时处理、云化管理和人工智能等关键能力,边云协同使能行业数字化。
软件平台,一定是引入云架构、云技术,实现端到端实时、协同式智能、可信赖、可动态重置的能力。
硬件平台:以异构计算为主,需要考虑ARM+X86+GPU+NPU+FPGA异构计算能力的支持。
核心特征:边云协同和边缘智能。
从趋势看,边缘计算发展分为三阶段。
第一阶段,这个阶段时期大致是2015年-2017年,概念孵化,产业共识
产业共识:边缘计算及其价值成为产业共识
概念泛化:雾计算、边缘计算、节点计算、移动边缘计算、开放边缘计算
边界不清:OT认为20年前的工业现场PLC即是、海康威视认为智能摄像头即是、思科认为云之下终端之上。
第二阶段,当前就是在第二阶段,2018年到2020年,主要是进一步聚焦及落地 探索
价值落地场景:从泛化概念,逐步聚焦到云边缘、物联网边缘价值场景。
业务本质:云计算在数据中心之外汇聚节点的延伸和演进。“边云协同、边缘智能”为核心能力。
第三阶段是2020年以后,开始规模发展
带来更丰富的应用场景:增值业务(如预测性维护)到控制系统(如vPLC)
以及更广泛的行业覆盖:从制造/运营商/能源到泛工业(如交通、企业、智慧家居等)
边缘计算已经形成产业共识,正从泛化概念走向进一步聚焦及落地 探索 ,未来3~5年是产业发展关键期。
1、全面感知
利用无线射频识别(RFID)、传感器、定位器和二维码等手段随时随地对物体进行信息采集和获取。 感知包括传感器的信息采集、协同处理、智能组网,甚至信息服务,以达到控制、指挥的目的。
2、可靠传递
是指通过各种电信网络和因特网融合,对接收到的感知信息进行实时远程传送,实现信息的交互和共享,并进行各种有效的处理。在这一过程中,通常需要用到现有的电信运行网络,包括无线和有线网络。
由于传感器网络是一个局部的无线网,因而无线移动通信网、3G网络是作为承载物联网的一个有力的支撑。
3、智能处理
是指利用云计算、模糊识别等各种智能计算技术,对随时接受到的跨地域、跨行业、跨部门的海量数据和信息进行分析处理,提升对物理世界、经济社会各种活动和变化的洞察力,实现智能化的决策和控制。
扩展资料:
基本功能
在线监测:这是物联网最基本的功能,物联网业务一般以集中监测为主、控制为辅。
定位追溯:一般基于传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等GPS(或其他卫星定位,如北斗)和无线通信技术,或只依赖于无线通信技术的定位,如基于移动基站的定位、RTLS等。
报警联动:主要提供事件报警和提示,有时还会提供基于工作流或规则引擎(Rule“sEngine)的联动功能。
指挥调度:基于时间排程和事件响应规则的指挥、调度和派遣功能。
预案管理:基于预先设定的规章或法规对事物产生的事件进行处置。
安全隐私:由于物联网所有权属性和隐私保护的重要性,物联网系统必须提供相应的安全保障机制。
远程维保:这是物联网技术能够提供或提升的服务,主要适用于企业产品售后联网服务。
在线升级:这是保证物联网系统本身能够正常运行的手段,也是企业产品售后自动服务的手段之一。
参考资料来源:百度百科-物联网概念
根据咨询公司STL Partners的研究发现,边缘计算能够在许多场景大展身手,这里选择了以下9个重要的应用场景:1、自主汽车
卡车车队的自动组队可能是自动车辆的首批使用案例之一。在这里,一群卡车在车队中彼此紧跟着行驶,节省了燃料成本,减少了拥堵。有了边缘计算,除了前面的卡车,所有卡车都将不再需要司机,因为卡车将能够以超低延迟相互通信。
2、油气行业资产的远程监控
石油和天然气的失败可能是灾难性的。因此,他们的资产需要仔细监控。
然而,石油和天然气工厂往往位于偏远地区。边缘计算使得实时分析与处理更接近资产,这意味着更少地依赖于与集中式云的高质量连接。
3、智能电网
边缘计算将成为更广泛采用智能电网的核心技术,有助于企业更好地管理其能源消耗。
连接到工厂、工厂和办公室边缘平台的传感器和物联网设备正在被用于实时监测能源使用并分析其消耗。有了实时可见性,企业和能源公司就可以达成新的交易,例如在电力需求的非高峰时段运行大功率机械。这可以增加企业对绿色能源,如风能的消耗。
4、预测性维护
制造商希望能够在故障发生之前分析和检测生产线的变化。
边缘计算有助于使数据的处理和存储更接近设备。这使物联网传感器能够以低延迟监控机器健康状况,并实时执行分析。
5、住院病人监护
医疗保健包含几个优势机会。目前,监测设备,如血糖监测仪、健康工具和其他传感器等,要么未连接,要么需要将来自设备的大量未处理数据存储在第三方云上。这给医疗保健提供者带来了安全问题。
医院网站上的边缘可以在本地处理数据,以保护数据隐私。边缘计算还可以向从业者及时通知患者的异常趋势或行为。
6、云游戏
云游戏是一种新型的游戏,它可以将游戏的实时内容直接传输到设备上,这种游戏高度依赖于延迟。
云游戏公司正在寻找尽可能接近玩家的边缘服务器,以减少延迟,提供完全响应和沉浸式游戏体验。
7、内容交付
通过在边缘缓存内容,如音乐、视频流、网页等,可以极大地改善内容传播。延迟可以显著降低。内容提供商正在寻求更广泛的分发CDN,从而根据用户流量需求保证网络的灵活性和定制性。
8、交通管理
边缘计算可以使城市交通管理更加有效。这方面的例子包括在需求波动的情况下优化公交频率,管理额外车道的开启和关闭,以及未来管理自动驾驶汽车流量。
通过边缘计算,使处理和存储距离智能家居更近,减少了回程和往返时间,并在边缘处理敏感信息。例如,亚马逊的Alexa等语音助手设备的响应时间会快得多。
有了边缘计算,就不需要将大量的流量数据传输到集中式云,从而降低了带宽和延迟的成本。
9、智能家居
智能家庭依赖于物联网设备从房子周围收集和处理数据。通常,这些数据被发送到一个中央远程服务器,在那里进行处理和存储。然而,这种现有体系结构存在回程成本、延迟和安全性方面的问题。
通过边缘计算,使处理和存储距离智能家居更近,减少了往返时间,并在边缘处理敏感信息。
这些只是边缘计算跨多个行业支持的许多用例中的一小部分。以谐云边缘计算应用实例来说,通信领域,谐云为行业巨头某在线服务公司业务场景定制开发、打造了云边协同平台,助力其轻松应对流量洪峰;交通领域,联合上汽集团商用车技术中心打造了“基于容器的下一代车云协同架构”,是汽车行业的首款“云、边、端”一体化架构,可实现百万级车联网大规模接入;为某跨海大桥打造了一体化协同的产品,积累了丰富的“边-端”设备协议对接经验,交付了行业顶尖的“软硬一体化”的整体解决方案。
其中,某在线服务公司和上汽集团案例分别荣获《2020年分布式云与云边协同十佳实践案例》奖项和《2021年分布式云与云边协同十佳实践案例》奖项。旗下边缘计算产品通过“2021云边协同类能力评估”、“边缘一体机、可信物联网云平台(通用/安全要求)”多项能力评估,获浙江CCF2021优秀产品奖,在业内拥有极佳口碑,并获得行业权威认可。
目前,谐云边缘计算已实践于分布式云、物联网、车云协同、边缘智能金融等多场景,为边缘计算领域树立了实践标杆和经典案例。并在一些典型行业如通信、交通、金融、军工等多个行业领域中得到大规模的落地验证。边缘计算有以下的六大特点:
第一,去中心化
边缘计算就是让网络、计算、存储、应用从“中心”向边缘分发,以就近提供智能边缘服务。
第二,非寡头化
边缘计算是互联网、移动互联网、物联网、工业互联网、电子、AI、IT、云计算、硬件设备、运营商等诸多领域的“十字入口”,一方面参与的各类厂商众多,另一方面“去中心化”在产品逻辑底层,就一定程度上通向了“非寡头化”。
第三,万物边缘化
边缘计算和早年的IT、互联网,如今的云计算、移动互联网,以及未来的人工智能一样,具备普遍性和普适性。
第四,安全化
在边缘计算出现之前,用户的大部分数据都要上传至数据中心,在这一上传的过程中,用户的数据尤其是隐私数据,比如个体标签数据、银行账户密码、电商平台消费数据、搜索记录、甚至智能摄像头等等,就存在着泄露的风险。而边缘计算因为很多情况下,不要再把数据上传到数据中心,而是在边缘近端就可以处理,因此也从源头有效解除了类似的风险。
第五,实时化
随着工业互联网、自动驾驶、智能家居、智能交通、智慧城市等各种场景的日益普及,这些场景下的应用对计算、网络传输、用户交互等的速度和效率要求也越来越高。以自动驾驶为例,在这些方面,几乎是要求秒级甚至是毫秒级的速度。爱陆通的具有边缘计算技术的工业网关可以更好地进行数据传输。
第六,绿色化
数据是在近端处理,因此在网络传输、中心运算、中心存储、回传等各个环节,都能节省大量的服务器、带宽、电量乃至物理空间等诸多成本,从而实现低成本化、绿色化。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)