(1)物联网中的数据量更大:物联网的最主要特征之一是节点的海量性,除了人和服务器之外,物品、设备、传感网等都是物联网的组成节点,其数量规模远大于互联网;
同时,物联网节点的数据生成频率远高于互联网,如传感节点多数处于全时工作状态,数据流源源不断。
(2)物联网中的数据速率更高:
一方面,物联网中数据海量性必然要求骨干网汇聚更多的数据,数据的传输速率要求更高;
另一方面,由于物联网与真实物理世界直接关联,很多情况下需要实时访问、控制相应的节点和设备,因此需要高数据传输速率来支持相应的实时性。
(3)物联网中的数据更加多样化:物联网涉及的应用范围广泛,从智慧城市、智慧交通、智慧物流、商品溯源,到智能家居、智慧医疗、安防监控等,无 一不是物联网应用范畴;
在不同领域、不同行业,需要面对不同类型、不同格式的应用数据,因此物联网中数据多样性更为突出。
(4)物联网对数据真实性的要求更高:物联网是真实物理世界与虚拟信息世界的结合,其对数据的处理以及基于此进行的决策将直接影响物理世界,物联网中数据的真实性显得尤为重要。
物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。
顾名思义,物联网就是物物相连的互联网。这有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。
物联网的实践最早可以追溯到1990年施乐公司的网络可乐贩售机—Networked Coke Machine。
物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防等多个领域。
物联网开发应用最重要的是各种接口的兼容性。
首先物联网终端设备数量比手机大得多,而且本身没有显示界面,通常只是能够通过特定网络协议回传数据的传感器(直接连入互联网或者通过网关设备),也就是说在物联网大数据汇聚的前端,数据的汇入是自动化进行的,应用开发的重点是后端的汇聚层。
物联网应用后端汇聚层需要有一个智能化软件系统(通常运行于数据中心),来管理物联网设备(包括固件升级等)、网络、处理海量数据,并提供给用户。
在设备层、汇聚层之外,物联网应用还需要一个分析层,负责处理物联网设备产生的大数据。
最后,是最终用户层,负责将有用的数据分析结果以可视化的方式展示到用户的终端设备中,这个层面的开发,可以是移动web网站也可以是一个手机APP。
由于设备层和汇聚层第三方专业产品和服务的完善,实际上今天的物联网应用开发,主要指的是分析层和用户层这两个层面,换而言之,未来物联网开发生态主要建立在成熟的云计算物联网平台上。成熟的物联网平台通常都提供汇聚层需要的大数据存储、实时信息总线以及于前端应用通讯的API。
实际上今天已经有大量面向物联网应用开发的平台,例如Xively、Mnubo、BugLabs和ThingWorx等,这些平台通常能够兼容大量物联网产品厂商的设备。
勾勒物联网与大数据的数据中心路线图从数据中心的角度看,物联网和大数据项目几乎总是强调网络和存储基础设施。规划人员在组织内开始实施这种大规模数据密集的项目之前,需要仔细地评估基础设施的需求。
传统的商业智能项目建立在不同于大数据项目的需求和理解的基础上。典型商业智能从清晰的想法开始尝试,必须经得起推敲,什么数据可用或必须收集来回答这些问题,需要上报何种结果,组织内谁需要这些结果。此类项目几十年来一直是企业级IT的基础。物联网(IoT)和大数据聚焦在不同的侧重点。他们会提问:如何提出正确的问题;问题是哪些,如何解决以更好地为客户服务,必须提供什么样的产品才能留住现有的客户,同时如何劝说新客户从公司购买产品和服务这通常能够说明,物联网和大数据项目各自需要不同的专业知识,不同级别的经验和不同种类的工具。因此,运营这样的项目对于IT团队会更加困难。在物联网和大数据领域迈出坚实的第一步当IT领域强大的新技术或新的方法获得了一定的动力,有人可能就会有采取一种急于求成的方法——有时候很少有人能理解怎样才能获得一次成功的初次实践。物联网和大数据显然属于这一类。这一认识可能诱导组织在一个非常令人失望或用处不大的数据上投入巨资。失败可能来自选择了不恰当的工具,没能正确配置支持系统的工具,缺乏必要的专业知识,或与错误的合作伙伴共事。一旦失败,许多决策者便将责任归咎于方法或技术。对于大数据的潜力,已经是毫无争议的议题,报告也同样鼓吹物联网,指出它将连接从我们的手机、我们的汽车到我们的家用电器等一切的一切。硬件、软件和专业服务的供应商已经加入进来,大家都想在由物联网这些技术方法将产生的潜在收益中分得一块大蛋糕。几乎所有的供应商,包括系统、存储、网络、 *** 作系统、数据管理工具和开发工具等领域的厂商都已经提出了与大数据有关的产品和服务集。这些同质化的厂商也开始提供从智能设备中进行数据转换和收集数据的方法。集成物联网与大数据在开始物联网和大数据项目之前,明智的领导者会慢下来,并评估什么是企业真正需要的东西。评估IT团队的能力和专长。现实地考虑什么事情可能会出错,从中可以汲取到哪些信息。组织通常设计大数据项目以确定哪些问题要问,而不是跟踪具体的,先前已知的需求。这意味着决策者和开发人员必须首先要确定的是,基于 *** 作的、机械的以及其他类型已经被收集的数据应该提出何种问题,因为很可能没有人会花时间来分析数据。物联网项目很可能成为大数据实施所需的数据来源。物联网和大数据两者都通常依赖的NoSQL数据库,反过来,依靠系统执行数据管理软件集群,网络容量的广泛使用和共享内存或复杂的数据缓存技术,将加快现有存储介质的应用。物联网项目很可能对数据中心网络和存储产生巨大的影响。大多数组织都拥有丰富的原始数据,数据来自于 *** 作系统、数据库管理产品、应用框架、应用程序和服务设备的销售点或点的自动收集信息。组织可以使用数据来获得更加清晰的,整体感知程序、产品和培训的优势和劣势。将物联网混合加入到大数据中,为公司提供进一步了解其客户提供帮助。分析这一巨大的和不断增长的数据,可以往往为企业提供线索,以更好地把握客户的需求。企业也可以了解到它哪些问题所对应的信息没有被正确地收集,并寻求自己的独特的问题解决方法。拒绝那种瞄准-射击-命中的速成方法,这点在物联网项目中尤其重要。很少有组织有这足够的胆量推迟项目,因为这会刺激或冒犯某个客户。IT团队必须明确地了解自己的目的,团队所使用的工具,选择的供应商将是这一尝试的重要部分。只有这样一个团队才能捕捉和驯服大数据“野兽”或促成将物联网有效的实践。这就需要一个组织来正确配置和提供其基础设施,该过程涉及部署必要的处理能力、内存、存储和网络容量,还有适当的软件开发,持续的运营、监控,还有管理和安全。上述这些元素中的每一个必须精心地选择和配置。然而,该过程并非一定会成为越做越好的案例。与物联网或其他客户面临的项目,这将是明智的考虑客户将如何反应,在网上与业务的所有时间。性能,隐私和功能功能都非常重要。物联网和大数据开发工具每一套大数据的方法都有它自己的一系列开发及部署工具。同样的道理也适用于物联网平台。要建立最有效的平台,公司的开发人员必须理解这些工具,知道如何使用它们,并清楚如何建立一套最优的系统。在大数据项目上工作的人可能会选择使用与物联网开发团队所不同的工具。然而,两个团队之间必须保持彼此沟通。物联网团队需要收集适当数据来支持大数据的实施,对于刚刚接触这些类型的新技术的企业,选择较小的项目起步是很明智的,之后伴随着团队开发的经验和专业知识的提升,再涉足大型项目。组织必须按照所评估的那样对待大数据项目,这需要IT管理团队的卓有远见的运营活动。选择适合于企业管理框架的监控和管理工具非常重要,它们可以提供易于理解和有用的数据。物联网项目,由于它直接面对客户,需要轻量、监测响应和管理。如果这些工具太重,顾客会抱怨贵公司对昂贵的数据计划的消耗太大。在信息收集和功能提供中间找到适当的平衡,整体性能和数据的来回发送容量会是棘手的问题。许多组织在大数据中找到真正的前景。物联网的最佳实践仍在不断涌现,所以标准咱不能广泛应用。然而,在这两种情况下,结合技术专长正确地选择和配置组件是一个成功的项目的关键要素。适当的配置选择,选择系统驱动,支持的 *** 作系统以及系统、网络和存储配置部署。然而,通常最重要的因素是,在项目上找好合适的心态。在大数据的案例中,目标应该是了解提出何种问题才是正确的,而不是把项目看作是另外一个商业智能的倡议。在物联网的案例中,该项目必须能够提供有用的服务,以换取客户对收集数据的授权,以满足基于大数据的销售活动,支持和商业智能系统。
物联网平台是物联网体系结构的基石,也是让物联网承接大数据、人工智能等技术的重要容器。物联网平台是整个物联网走向智能化的基础。
从物联网的扩展性和功能性来看,物联网平台能够为物联网技术体系带来三大方面的好处:
物联网平台能够为物联网体系的功能扩展提供基础
物联网平台能够为物联网拓展应用边界
物联网平台能够为智能化应用提供场景支撑
所以,物联网平台是物联网能够多方位落地应用的重要基础。爱陆通物联网工业设备支持市场上主流的物联网平台。如图所示
物联网开发平台
物联网通过大量的网络传感器来接受数据当前收集的信息数据类型不同,物联网的数据特征与大数据不同,主要特征有:
heterogeneity, variety, unstructured feature, noise, and high redundancy
物联网数据特征:异构型、多样性、无结构化特征、噪声、高冗余。
大数据的4V特征:大量化、多样化、快速化、价值化
当今物联网数据不是的大数据最重要的组成部分,但是据惠普的预测,到2030年,传感器数量将达到1万亿,成为大数据的重要组成部分。1、软件工程、网络工程、物联网、大数据发掘、计算机科学与技术这些专业都可以从事大数据开发工作,就业前景很好。
2、大数据(big data),是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。1、物联网就是“物与物互相连接的互联网”。物联网的感知层,产生了海量的数据,将会极大地促进大数据的发展。同样,大数据应用也发挥了物联网的价值,反向刺激了物联网的使用需求。越来越多的企业,发觉能够通过物联网大数据获得价值,就会愿意投资建设物联网。
2、其实这个问题也可以进一步延伸为“大数据和5G之间的关系”。5G的到来,通过提升连接速率,提升了“人联网”的感知,也促进了人类主动创造数据。另一方面,它更多是为“物联网”服务的。包括低延时、海量终端连接等,都是物联网场景的需求。
3、5G刺激物联网的发展,而物联网刺激大数据的发展。所有通信基础设施的强大,都是为大数据崛起铺平道路。
4、据调查,63%的公司从对大数据投资中获得了可衡量的效果。如果再加上传感器、追踪器等物联网能力的加持,数据驱动型企业有潜力实现更广泛的市场研究、更好的流程可见性、更高的运营效率。然而,大数据咨询专家认为,某些行业或许本身就更适合从大数据和物联网的结合中受益。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)