基本学制:四年 | 招生对象: | 学历:中专 | 专业代码:080905
培养目标
培养目标
培养目标:本专业培养德、智、体等方面全面发展,掌握数学和其他相关的自然科学基础知识 以及和物联网相关的计算机、通信和传感的基本理论、基本知识、基本技能和基本方法,具有较强 的专业能力和良好外语运用能力,能胜任物联网相关技术的研发及物联网应用系统规划、分析、 设计、开发、部署、运行维护等工作的高级工程技术人才。
培养要求:
1.掌握马列主义、毛泽东思想与中国特色社会主义基本理论,具有良好的人文社会科学素 养、职业道德和心理素质,社会责任感强;
2.掌握从事本专业工作所需的数学等相关的自然科学知识以及一定的经济学、管理学和工 程科学知识;
3.系统掌握物联网专业基础理论知识和专业知识,理解基本概念、知识结构、典型方法,理 解物理世界与数字世界的关联,具有感知、传输、处理一体化的核心专业意识;
4.掌握物联网技术的基本思维方法和研究方法,具有良好的科学素养和一定的工程意识, 并具备综合运用掌握的知识、方法和技术解决实际问题的能力;
5.具有终身学习意识以及运用现代信息技术获取相关信息和新技术、新知识的能力;
6.了解物联网的发展现状和趋势,具有技术创新和产品创新的初步能力;
7.了解与本专业相关的职业和行业的重要法律法规及方针政策,理解工程技术伦理的基本 要求;
8.具有一定的组织管理能力、表达能力、独立工作能力、人际交往能力和团队合作能力;
9.具有初步的外语应用能力,能阅读本专业的外文材料,具有一定的国际视野和跨文化交 流、竞争与合作能力;
10掌握体育运动的一般知识和基本方法,形成良好的体育锻炼习惯。
主干学科:计算机科学与技术、电子科学与技术、通信工程。
核心知识领域:物联网技术体系、标识与感知、物联网通信、物联网数据处理、物联网控制、物 联网信息安全、物联网工程设计与实施等。
核心课程示例(括号内理论学时+实验或习题课学时):
示例一:物联网工程导论(18学时)、物联网通信技术(45 +18学时)、RFID原理及应用(45+ 18学时)、传感器原理及应用(45 +18学时)、传感网原理及应用(45 +18学时)、物联网软件设计 (27 +18学时)、物联网数据处理(54学时)、物联网中间件设计(27 +18学时)、物联网应用系统 设计(54学时)、嵌入式系统与设计(45 +18学时)、传感器微 *** 作系统原理与设计(36+36学 时)、物联网控制原理与技术(45 +18学时)、物联网定位技术(45 +18学时)、物联网信息安全 (45 +18学时)、物联网工程规划与设计(36学时)、计算机网络(54学时)。
示例二:物联网工程概论(30学时)、物联网算法基础(60 +15学时)、物联网硬件基础(60+ 15学时)、传感网与微 *** 作系统(45 +15学时)、物联网安全与隐私(30学时)、无线单片机与协议 开发(60+15学时)、JAVA语言程序设计(30 +15学时)、物联网移动应用开发(20 +10学时)、物 流管理信息系统(30+15学时)、RFID系统(30学时)、物联网嵌入式系统开发(20 +10学时)、多 传感器数据融合技术(60学时)、云计算(30学时)、物联网与智慧思维(30学时)、移动人机交互 技术(30学时)、社会计算(30学时)。
示例三:物联网工程导论(18学时)、物联网体系结构(40学时)、传感器原理及应用( 36+10 学时)、物联网数据处理(40+10学时)、嵌入式系统原理(40 +12学时)、物联网工程规划与设计 (40+10学时)、物联网应用系统设计(50学时)、物联网通信技术(40 +14学时)、RFID与智能卡 技术(40+10学时)、物联网控制技术与应用(40+14学时)、物联网信息安全(40 +14学时)、传感 器网络及应用(40 +14学时)、网络规划与设计(40 +14学时)、数据仓库与数据挖掘(40+10学 时)、信息系统分析与集成(40+14学时)、软件集成与服务计算(40+10学时)。
主要实践性教学环节:课程实验、课程设计、专业实习、毕业设计(论文)。
主要专业实验:传感器实验、传感网实验、物联网通信实验、物联网数据处理实验、物联网工 程规划与设计实验。
修业年限:四年。
授予学位:工学学士。
职业能力要求
职业能力要求
专业教学主要内容
专业教学主要内容
《嵌入式原理及应用》、《无线传感器网络》、《汇编语言与微机原理》、《传感器微 *** 作系统原理与设计》、《应用密码学》、《光电子物理基础》、《模拟电子技术》、《数字建模》、《微处理器系统设计》、《物联网信息处理技术》 部分高校按以下专业方向培养:电商物联网、移动嵌入式、智能机器人、物联网大数据采集与分析。
专业(技能)方向
专业(技能)方向
IT类企业:物联网工程、物联网系统设计架构、物联网应用系统开发、物理网系统管理、网络应用系统管理、物联网设备技术支持、云计算。
职业资格证书举例
职业资格证书举例
继续学习专业举例
就业方向
就业方向
物联网专业就业前景
目前,教育部审批设置的高等学校战略性新兴产业本科专业中有“物联网工程”、“传感网技术”和“智能电网信息工程”三个与物联网技术相关的专业。此三个专业从2011年才开始首次招生,目前为止还没有毕业生,所以,无法从往年的就业率来判断未来的就业情况,但可从行业的整体发展趋势和人才市场的需求等方面了解该专业未来的就业形势。
作为国家倡导的新兴战略性产业,物联网备受各界重视,并成为就业前景广阔的热门领域,使得物联网成为各家高校争相申请的一个新专业,主要就业于与物联网相关的企业、行业,从事物联网的通信架构、网络协议和标准、无线传感器、信息安全等的设计、开发、管理与维护,也可在高校或科研机构从事科研和教学工作。未来的物联网技术要得到发展,需要在信息收集、改进、芯片推广、程序算法设计等方面有所突破,而做到这些的关键是如何培养人才。柏斯维也指出,从整体来看,物联网行业是非常需要人才。
对应职业(岗位)
对应职业(岗位)
其他信息:物联网工程专业学习的课程主要涉及基础类课程和专业类课程。基础类课程主要包括程序设计、数据结构、计算机组成、 *** 作系统、计算机网络、信息管理,这些课程涉及专业需要掌握的核心概念、基本原理以及相关的基本技术和方法,以此让学生了解学科发展历史和现状。专业类课程主要有电路与电子技术、标识与感知、物联网通信、物联网数据处理、物联网控制、物联网信息安全、物联网工程设计与实施知识领域的基本内容。
材料补充:
物联网工程专业是一门普通高等学校本科专业,属于计算机类专业,基本修业年限为四年,授予工学学士学位。该专业要求掌握数学和其他相关的自然科学基础知识以及和物联网相关的计算机、通信和传感的基本理论、基本知识、基本技能和基本方法,培养能够系统地掌握物联网的相关理论、方法和技能,具备通信技术、网络技术、传感技术信息领域宽广的专业知识的高级工程技术人才。
物联网是互联网基础上的延伸和扩展的网络。将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。物联网的基本特征可概括为整体感知、可靠传输和智能处理。
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效推动了智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大提高了人们的生活质量。姓名:刘家沐
学号:19011210553
资料来源于网上,自己编辑整理
嵌牛导读:时间敏感网络的目标就是实现同一个网络中实时性关键数据流与普通数据流有良好兼容性的共同传输。要实现这两种业务的融合就是要求时间敏感网络中设备对时间表有着精准的把控,实现实时性关键业务所要求的低时延低抖动。此外,如果能将各类设备错综复杂的业务流在同一网络上进行传输,这便意味着专用网络连线的减少,简化系统设备的部署流程,同时又能减少系统设备的体积与花销。
嵌牛鼻子:时间敏感网络 TSN 确定性传输
嵌牛提问:近些年来被提出的时间敏感网络相关问题
嵌牛正文:
一. 问题提出
传统的以太网通常采用的转发模式是“Best Effort”(尽力而为),但是这种转发方式往往缺乏确定性。当数据包到达发送端口后并准备发送时,发送端按照先入先出的原则进行转发,但是当某个发送端口同时有多个数据要进行发送的时候,这些数据就要进行排队,排队等待时长由队列长度,数据发送速度等多个因素决定。如果网络中流量过大,便会出现拥塞或者丢包等情况,排队等待时间也会变得无法预测,确定性也就无法保证,这就会引起流量调度,时间同步,流量监控,容错机制标准化等问题。
在带宽足够的情况下,这种尽力而为的以太网可以适应于目前大多数的情况,但在某些应用领域这种不确定性是不可容忍的,例如远程医疗或者网络辅助的自动驾驶。在这些安全或者生命攸关(Security or Life Critical)的网络应用中,某次信息的传输不确定性可能会带来无法挽回的后果。
这时,建立可靠的传送机制就成了摆在技术人员面前的首要问题。
为了保证某些较为重要的受控物理系统的确定性行为,需要实时网络具有确定且较低的网络延迟和延迟变化(抖动)。传统上,现场总线已经用于此目的,但由于总线的设计,花销,体积,重量等多种因素,时间敏感网络开始被提出。
时间敏感网络(Time Sensitive Networking,TSN)基于标准以太网。在标准以太网上的通信流量(如音视频流)可以与具有高优先级确定性信息流(如运动控制)等共享物理网络。不同的服务对时延的要求不一样,尤其是在那些需要确定传输的下行服务领域,对时延和抖动要求尤为敏感。
时间敏感网络的目标就是实现同一个网络中实时性关键数据流与普通数据流有良好兼容性的共同传输。要实现这两种业务的融合就是要求时间敏感网络中设备对时间表有着精准的把控,实现实时性关键业务所要求的低时延低抖动。此外,如果能将各类设备错综复杂的业务流在同一网络上进行传输,这便意味着专用网络连线的减少,简化系统设备的部署流程,同时又能减少系统设备的体积与花销。
TSN并非涵盖整个网络,而仅仅是对MAC层的定义,对数据帧进行处理的过程。
二.内容历史
AVB——以太网音视频桥接技术(Ethernet Audio Video Bridging)是IEEE的8021任务组于2005开始制定的一套基于新的以太网架构的用于实时音视频的传输协议集。它有效地解决了数据在以太网传输中的时序性、低延时和流量整形问题。同时又保持了100%向后兼容传统以太网,是极具发展潜力的下一代网络音视频实时传输技术。其中包括:
1 8021AS:精准时间同步协议(Precision Time Protocol,简称PTP)
2 8021Qat:流预留协议(Stream Reservation Protocol,简称SRP)
3 8021Qav:排队及转发协议(Queuing and Forwarding Protocol,简称Qav)
4 8021BA:音视频桥接系统(Audio Video Bridging Systems)
5 1722:音视频桥接传输协议(Audio/Video Bridging Transport Protocol,简称AVBTP)
6 1733:实时传输协议(Real-Time Transport Protocol,简称RTP)
7 17221:负责设备搜寻、列举、连接管理、以及基于1722的设备之间的相互控制。
AVB不仅可以传输音频也可以传输视频。用于音频传输时,在1G的网络中,AVB会自动通过带宽预留协议将其中750M的带宽用来传输双向420通道高质量、无压缩的专业音频。而剩下的250M带宽仍然可以传输一些非实时网络数据。用于视频传输时,可以根据具体应用调节预留带宽。比如:750M带宽可以轻松传输高清full HD视觉无损的视频信号。并且可以在AVB网络中任意路由。
IEEE 8021任务组在2012年11月的时候正式将AVB更名为TSN – Time Sensitive Network时间敏感网络。也就是说,AVB只是TSN中的一个应用。
第一个应用就是我们的专业音视频(Pro AV)。在这个应用领域里强调的是主时钟频率。也就是说,所有的音视频网络节点都必须遵循时间同步机制。
第二个应用是在汽车控制领域。目前大多数的汽车控制系统非常复杂。比如说:刹车、引擎、悬挂等采用CAN总线。而灯光、车门、遥控等采用LIN系统。娱乐系统更是五花八门,有FlexRay和MOST等目前的车载网络。实际上,所有上述系统都可以用支持低延时且具有实时传输机制的TSN进行统一管理。可以降低给汽车和专业的A/V设备增加网络功能的成本及复杂性。
第三个应用是商用电子领域。比如说,你坐在家中,可以通过无线WIFI连接到任何家中的电子设备上,实时浏览任何音视频资料。
最后一个应用也是未来最广泛的应用。所有需要实时监控或是实时反馈的工业领域都需要TSN网络。比如:机器人工业、深海石油钻井以及银行业等等。TSN还可以用于支持大数据的服务器之间的数据传输。全球的工业已经入了物联网(Internet of Things,IoT)的时代,毫无疑问TSN是改善物联网的互联效率的最佳途径。
三 研究现状与热点
TSN正在关键的小型封闭式汽车和工业网络中得到广泛采用,以建立可靠的ULL端到端连接。然而,关键的TSN限制恰恰是关注于封闭网络,例如车载网络和小规模机器人网络。在机器人和车载网络中运行的网络应用程序通常涉及与外部非TSN网络的显着交互。机器人和车载网络应用程序需要通过外部网络与移动性处理程序紧密集成。如果外部网络中没有适当支持高级网络功能(如移动性),那么TSN的好处基本上仅限于小型封闭网络。因此,TSN和不同外部网络之间的平滑互 *** 作性对于异构网络场景中的TSN *** 作是必不可少的。理想情况下,TSN和非TSN网络之间的连接应该能够适应与TSN类似的特性,以确保异构部署中的整体端到端连接要求。
V2X通信:Lee和Park提出了iTSN,这是一种将大型TSN网络互连用于大规模应用的新方法。 iTSN方法利用诸如IEEE 80211p的无线协议用于不同TSN网络之间的互联网。特别地,跨互连网络共享全球定时和同步信息对于建立公共定时平台以支持外部网络中的TSN特性是重要的。 因此,iTSN方法使得例如车载网络能够将安全关键信息发送到控制节点,例如路侧单元(RSU),在异构部署中具有微秒级的延迟。通过采用这种可靠的互连技术,可以在比当前可行的毫秒范围短得多的(微秒)时间跨度内实现车辆制动安全距离。总的来说,TSN和互连技术(如iTSN)可以为安全的自动驾驶系统创建一个通信平台。
网络建模:尽管TSN标准在汽车驾驶网络中得到了很大的重视,但网络部署的一个主要挑战是如何管理网络的复杂性。汽车行业随着技术的进步,对现有的车载网络基础设施提出了更多的要求。随着车载网络中传感器数量的增加,日益增加的连接 在网络规划中,应相应地满足传感器相互之间的连接和带宽要求。然而,车载控制系统网络需求的动态变化可能需要更广泛的网络基础设施,从而导致更高的支出。
硬件和软件设计:支持TSN功能的硬件和软件组件设计,例如TSN节点中的调度,抢占和时间触发事件生成,需要大量的工程和开发工作。硬件实现在计算资源利用率和执行延迟方面非常高效,但导致难以适应新应用程序要求的严格架构。 另一方面,软件实现可以灵活地适应新的应用程序要求,但由于网络功能的软件化,例如时间触发的调度和硬件虚拟化,可能使CPU过载。
总结和吸取的经验教训:迄今为止,大多数关于TSN的研究都集中在独立且与外部网络隔离的车载网络上。 TSN研究领域的另一个限制是缺乏包含大规模异构网络架构的仿真框架。应在基准评估中创建并考虑包括本地和外部网络交互(例如汽车驾驶)的有效用例。目前,大多数TSN研究中的一般用例是支持车载传感器连接和用于信息娱乐的音频/视频传输的车载网络。未来的定制TSN仿真框架应基于支持具有本地化和外部网络交互的下一代应用的网络,例如汽车驾驶。类似地,基于SDN的TSN管理可以利用分层控制器设计来将管理从诸如车辆网络之类的本地化网络扩展到诸如车辆到任何(vehicle-to-any (V2X))网络之类的外部网络。
四. 下一步研究趋势
TSN网络基础设施和协议必须支持有限的端到端延迟和可靠性,以支持与物联网,医药,汽车驾驶和智能家居中的关键应用相关的基本功能。用于满足这些应用要求的基于TSN的解决方案导致支持各种协议的复杂网络基础设施。因此,简化的TSN网络管理机制对于降低复杂性同时满足ULL应用的关键需求至关重要。
因此,多个TSN网络之间的可靠,安全和低延迟通信对于支持广泛的未来应用至关重要。 缺乏与外部TSN和非TSN网络连接和通信的TSN标准阻碍了互 *** 作网络中的研究活动,需要紧急解决。总之,我们确定了TSN研究的以下主要未来设计要求:
① 支持从时间敏感到具有流量调度功能的延迟容忍应用程序的各种应用程序。
② 多个封闭TSN架构之间的连接。
③ 灵活和动态的优先级分配,以确保较低优先级流量的有限端到端延迟。
④ 采用SDN以全球网络视角集中管理TSN功能。
⑤ 通过自我估计和本地时钟偏差校正来实现高效的定时信息共享和精确的时钟设计。
⑥ 计算有效的硬件和软件设计。
1 TSN中低优先级数据的传输
TSN节点抢占正在进行的低优先级帧传输,用于发送进入的高优先级帧以保证高优先级帧的绝对最小TSN节点传输延迟。根据高优先级流量的强度,可以多次抢占低优先级帧。结果,由于抢占事件直接取决于高优先级业务强度,因此不能保证低优先级业务的端到端延迟特性。如果高优先级业务强度明显高于低优先级业务强度,则可以大大增加低优先级业务的端到端延迟。通常,低优先级流量承载延迟敏感数据,这不如高优先级流量数据重要,但仍应在最坏情况下的deadline内传送。在当前的技术水平中,没有研究机制或标准来确保抢占下的低优先级业务的最坏情况端到端延迟。
因此,未来的研究需要开发新的机制,以确保TSN网络中低优先级流量的有界最坏情况延迟
2 无线TSN的发展
为了将工业设备(工业传感器/执行器)以无线方式连接到TSN网络,5G是非常合适的解决方案。与4G相比,5G的新功能,尤其是无线接入网络(RAN),提供了更好的可靠性和传输延迟。而且,新的5G系统架构允许被灵活地部署。因此,5G可以实现不受电缆安装限制的TSN网络。专升本快速报名和免费咨询:>
自学ks有物联网工程专业。物联网工程专业自考科目有中国近现代史纲要、马克思主义基本原理概论、英语(二)、日语(二)、俄语(二)、中国简史、信息技术、应用文写作、现代管理学、无线通信技术、传感器原理及应用、传感器原理及应用(实践)、数据通信与网络、物联网工程导论、无线传感网技术、无线传感网技术(实践)、嵌入式系统设计、嵌入式系统设计(实践)、智能数据处理、智能数据处理(实践)、物联网控制原理与技术、物联网系统综合设计(实践)、物联网工程毕业论文。
免费领取自考学习资料、知识地图:>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)