边缘计算有哪些应用场景?

边缘计算有哪些应用场景?,第1张

根据咨询公司STL Partners的研究发现,边缘计算能够在许多场景大展身手,这里选择了以下9个重要的应用场景:
1、自主汽车
卡车车队的自动组队可能是自动车辆的首批使用案例之一。在这里,一群卡车在车队中彼此紧跟着行驶,节省了燃料成本,减少了拥堵。有了边缘计算,除了前面的卡车,所有卡车都将不再需要司机,因为卡车将能够以超低延迟相互通信。
2、油气行业资产的远程监控
石油和天然气的失败可能是灾难性的。因此,他们的资产需要仔细监控。
然而,石油和天然气工厂往往位于偏远地区。边缘计算使得实时分析与处理更接近资产,这意味着更少地依赖于与集中式云的高质量连接。
3、智能电网
边缘计算将成为更广泛采用智能电网的核心技术,有助于企业更好地管理其能源消耗。
连接到工厂、工厂和办公室边缘平台的传感器和物联网设备正在被用于实时监测能源使用并分析其消耗。有了实时可见性,企业和能源公司就可以达成新的交易,例如在电力需求的非高峰时段运行大功率机械。这可以增加企业对绿色能源,如风能的消耗。
4、预测性维护
制造商希望能够在故障发生之前分析和检测生产线的变化。
边缘计算有助于使数据的处理和存储更接近设备。这使物联网传感器能够以低延迟监控机器健康状况,并实时执行分析。
5、住院病人监护
医疗保健包含几个优势机会。目前,监测设备,如血糖监测仪、健康工具和其他传感器等,要么未连接,要么需要将来自设备的大量未处理数据存储在第三方云上。这给医疗保健提供者带来了安全问题。
医院网站上的边缘可以在本地处理数据,以保护数据隐私。边缘计算还可以向从业者及时通知患者的异常趋势或行为。
6、云游戏
云游戏是一种新型的游戏,它可以将游戏的实时内容直接传输到设备上,这种游戏高度依赖于延迟。
云游戏公司正在寻找尽可能接近玩家的边缘服务器,以减少延迟,提供完全响应和沉浸式游戏体验。
7、内容交付
通过在边缘缓存内容,如音乐、视频流、网页等,可以极大地改善内容传播。延迟可以显著降低。内容提供商正在寻求更广泛的分发CDN,从而根据用户流量需求保证网络的灵活性和定制性。
8、交通管理
边缘计算可以使城市交通管理更加有效。这方面的例子包括在需求波动的情况下优化公交频率,管理额外车道的开启和关闭,以及未来管理自动驾驶汽车流量。
通过边缘计算,使处理和存储距离智能家居更近,减少了回程和往返时间,并在边缘处理敏感信息。例如,亚马逊的Alexa等语音助手设备的响应时间会快得多。
有了边缘计算,就不需要将大量的流量数据传输到集中式云,从而降低了带宽和延迟的成本。
9、智能家居
智能家庭依赖于物联网设备从房子周围收集和处理数据。通常,这些数据被发送到一个中央远程服务器,在那里进行处理和存储。然而,这种现有体系结构存在回程成本、延迟和安全性方面的问题。
通过边缘计算,使处理和存储距离智能家居更近,减少了往返时间,并在边缘处理敏感信息。
这些只是边缘计算跨多个行业支持的许多用例中的一小部分。以谐云边缘计算应用实例来说,通信领域,谐云为行业巨头某在线服务公司业务场景定制开发、打造了云边协同平台,助力其轻松应对流量洪峰;交通领域,联合上汽集团商用车技术中心打造了“基于容器的下一代车云协同架构”,是汽车行业的首款“云、边、端”一体化架构,可实现百万级车联网大规模接入;为某跨海大桥打造了一体化协同的产品,积累了丰富的“边-端”设备协议对接经验,交付了行业顶尖的“软硬一体化”的整体解决方案。
其中,某在线服务公司和上汽集团案例分别荣获《2020年分布式云与云边协同十佳实践案例》奖项和《2021年分布式云与云边协同十佳实践案例》奖项。旗下边缘计算产品通过“2021云边协同类能力评估”、“边缘一体机、可信物联网云平台(通用/安全要求)”多项能力评估,获浙江CCF2021优秀产品奖,在业内拥有极佳口碑,并获得行业权威认可。
目前,谐云边缘计算已实践于分布式云、物联网、车云协同、边缘智能金融等多场景,为边缘计算领域树立了实践标杆和经典案例。并在一些典型行业如通信、交通、金融、军工等多个行业领域中得到大规模的落地验证。

经过长时间的积累,边缘计算终于迎来了瓜熟蒂落的时刻。随着底层技术的进步和应用的不断丰富,国内外运营商和产业企业均进入到MEC商用落地阶段。进入2019年,国内三大运营商开展了积极的边缘计算试点和部署工作。例如,中国移动发布边缘计算“Pioneer300”先锋行动;中国电信打造边缘计算开放平台ECOP,构建边缘云网融合的网络服务平台及应用使能环境;中国联通展示业界首个“MEC智慧水利”案例。

运营商和企业特点各异

进入2019年以来,边缘计算呈现出了突飞猛进的发展势头,那么边缘计算何时将进入大规模部署阶段?

李开认为,要解答上述问题,首先需要理清边缘计算部署的位置。九州云认为,边缘计算是一个业务驱动的技术,失去了业务驱动,边缘也就失去了意义,因此需要解答的第一个核心问题是边缘计算的驱动力从何而来?

在李开看来,边缘计算主要有运营商和企业两大驱动来源,其中前者来自于对5G场景的落地,后者来自于自身借助5G提升的落地,它们的差别如下。

第一,前者是必然要推动的,后者是可以选择的。第二,前者的边缘架构是相对聚焦的,而且有ETSI MEC标准等可以参考,有StarlingX、Tacker、Airship等开源框架作为起点;后者是相对长尾的,要跟随业务场景摸索,开源框架作为起点只能解决平台问题,不能解决应用问题。第三,前者是从上而下的布局,后者是自下而上的驱动。第四,前者覆盖所有边缘应用,注重边缘分发平台的打造甚于单个应用场景的优化;后者注重实际单个应用的落地,更加能够轻装上阵。第五,前者的时间能够降维并为企业边缘架构所复用,后者的实践无法升级成为前者的架构。

由于运营商市场和企业市场特点相异,因此其进入大规模部署阶段的时间点也不会相同。

李开表示,运营商边缘计算的大规模部署与5G息息相关。受5G牌照、技术、采购和场景选择等多种因素影响,各大运营商的时间点各不相同,但是边缘平台肯定优先于5G至少1年进行试点和局部部署。“这个时间点大概会在2019年下半年和2020上半年到来。”李开认为。

就企业市场而言,其受零售、物流、医疗等企业需求的推动,虽然现在基于4G的边缘网络相较于5G在边缘适配上有一定的天然劣势,但是作为试点却是在一定条件下可以实现的。李开认为,企业的边缘框架和运营商框架相类似,只是在网络延时等条件上有一定折扣,在应用丰富程度上有一定收敛,在空间覆盖上相对局限,但在与企业内设备通信更加复杂。“即使现在企业有独自实现边缘框架的可能性,但是在边缘网络尚不规模具备、需求还需要磨合的情况下,可能要等到2020年下半年才真正具备大规模部署的能力。”李开认为。

物联网成边缘计算最强劲驱动力

物联网是边缘计算的主要应用场景,也是驱动边缘计算的主要动力所在。正因为如此,人们往往把边缘计算和物联网混在一起,但实际上两者虽有联系却并非完全重叠。

在李开看来,物联网和边缘计算有相同之处。例如,海量设备数据的导入可能导致数据爆炸问题需要解决;海量设备所在的物理世界需要在数字世界产生一个“数字孪生(Digital Twins)”,如IoT Shadow、VR对真实世界的复原、自动驾驶对驾驶环境的模拟等,用来模拟物理世界的运行模式。

李开表示,边缘计算和物联网的不同之处也很明显:第一,物联网产生的数据爆炸不一定会产生海量数据,如NB-IoT和LoRa也可以适配物联网,而边缘的主要能力是海量数据的传输;第二,物联网不一定需要低延时,而边缘计算必然强调低延时;第三,物联网大部分基于Internet(核心网),而边缘计算是独立于Internet(核心网)的网络切片,边缘网络安全性更高;第四,物联网未必产生数字视觉,而数字视觉造成的数据则是边缘的一个核心能力。

因此在李开看来,边缘网络落地的行业必然是在和“物”打交道的场景中,同时具备海量数据、低延时、高安全等需求的场景,如工业生产执行系统、工业缺陷识别系统、自动驾驶、AR/VR、远程医疗等。李开表示,九州云所接触到的客户则主要集中在工业制造领域,他们对于工业生产执行系统、工业缺陷识别系统的需求比较强烈。

开放架构加速边缘计算落地

在边缘计算落地过程中,运营商侧重于解决平台问题,打造边缘应用的承载商店和网络,因此非常重视平台的打造和开放。

李开表示,多种开放框架可以支持边缘平台的打造,如StarlingX(OpenStack + K8S)支持边缘基础架构(Edge-IaaS),Tacker、Airship等支持边缘编排(Edge MANO)等,基于这些技术可以打造符合ETSI MEC参考架构的边缘管理平台。九州云在这几个领域都积极参与,是StarlingX/Airship的中国发起单位之一,并在StarlingX拥有全球技术委员会的席位,在Tacker等编排技术上,九州云是全球第一的上有源码贡献厂商。

李开认为,开放边缘平台能力给垂直行业企业,必将产生很好的商用效果。因为开放架构有利于自主的边缘核心能力,提升竞争力。在边缘计算领域,运营商在“硬管道”(边缘基础网络)上具备无可替代的优势,由于边缘网络并不暴露在Internet上,这一优势无法被互联网企业在OTT方面利用,边缘为运营商造就了一个可以直接将触角延伸到最终用户,并重新发现价值的能力。而边缘平台则是“软管道”,运营商必然需要掌控核心能力,基于开放架构而不是商业架构,为运营商带来更好的控制力,加速平台的成形。

此外,开放架构有利于更好地复用运营商原有技术积累,加速落地边缘的编排、边缘云的优化、边缘接口的标准化等技术。事实上运营商在已经完成的NFV架构改造中已经积累了很多,如基于TOSCA的网元编排,适配OSS的接口对接,基于GPU、DPDK的性能加速等,运营商都是基于OpenStack的架构进行优化的,因此在边缘领域坚持开放架构,有利于运营商技术上的继承和复用,加速落地。

切忌“为了边缘而边缘”

边缘计算目前已经到了规模应用的前夕,而要实现规模部署,李开认为边缘计算还需要克服如下挑战:第一,边缘的部署位置,以及与边缘VNF/PNF的整合;第二,边缘机房的改造(直流、空间、制冷)、容量估算(基站接入数、带宽)和安全防护升级;第三,边缘的高可用如何解决;第四,边缘的接入模式(专线、LTE、IOT)和终端的位置(以企业为单一终端还是以设备为单一终端);第五,边缘运维模式和现有网络运维、业务运维、云运维模式的整合,云边协同如何落地。

对于落地垂直行业,李开认为前景虽然明朗,但是也存在一些担忧,主要是“为了边缘而边缘”,即没有商业驱动、只是为了和热点结合引入的边缘计算。“技术问题其实都能够通过积累解决,应用刚需是无法通过技术刚需创造的。”李开认为。而要解决这些担忧,则需要审慎识别客户需求,即是否与“物”打交道的场景,是否具备海量数据、低延时、高安全等需求的场景。

此外,安全也是运营商边缘的优势之一,边缘网络通过网络切片模式实现,是不暴露在互联网上的网络,相对来说更加安全,当然边缘网络自身的安全防护也需要加强,这个模式与核心网的安全加固在技术上有相同之处,新的威胁是针对边缘应用的访问模式,对边缘机房(汇聚或者接入)安全防护能力的升级。

九州云:边缘计算弄潮儿

李开介绍,九州云成立于2012年,是中国第一家从事OpenStack和相关开源服务的专业公司。作为边缘计算的积极探路者,九州云在边缘计算领域积极布局。九州云为运营商打造符合ETSI MEC标准规范的、基于开放架构的边缘平台,九州云在2018年6月成为“中国联通边缘生态合作伙伴”,在2018年10月成为“中国移动边缘开放实验室”的成员,面对运营商客户,九州云主要提供全面解决方案和服务,主要涵盖“边缘应用调度管理平台”“边缘基础架构平台”两大领域。

李开表示,九州云对于边缘计算的商业模式 探索 ,主要集中在工业领域,依托开放框架、低延时边缘网络、大数据处理能力,为客户提供工业数字孪生(Digital Twins)能力,客户包含西格数据、海德控制、格力电器(和中国联通合作)等工业领域客户,其“工业智能管理边缘云平台”获得了2018年度制造业信息化优秀智能制造解决推荐方案,“基于OpenStack的刀具检测于寿命预测管理边缘计算平台”也获得了中国自动化学会“CAA智慧系统创新解决方案”等荣誉。

边缘计算是一种分布式计算框架,它使企业应用程序更接近数据源。这些数据来源包括本地边缘服务器和物联网(IoT)设备。

边缘计算的一些最大驱动因素包括,客户追求更好的性能,以及要求缩短交易时间。因此,使这些企业应用程序接近数据是有优势的,比如能够减少延迟和更快分析。


目录

1 边缘计算公司是做什么的?

2 顶级计算公司

21亚马逊云 科技

22微软Azure

23 ClearBlade

24戴尔技术

25 EdgeConneX

26章节

3 如何比较边缘计算公司

4 选择一家边缘计算公司



边缘计算公司不断地提供解决方案,来满足人们对边缘计算的需求,这些需求都是因像延迟、带宽、隐私和自主性这样的因素而触发的。在应用程序对实时数据的需求中,增强现实技术和虚拟现实技术(AR和VR)以及自动驾驶 汽车 技术,都为边缘计算提供商提供了重点研究领域。

这些公司还通过定制解决方案,提高带宽使用和可用性,提供因物联网设备普及导致的带宽使用增加的解决方案。他们还为网络中的用例创建了解决方案,在这些网络之中,即便与云端的连接断开了,传感器和制动器之间仍有望进行自主 *** 作。

除了VR和AR之外,边缘计算公司还提供诸如智能家居、云 游戏 、虚拟化无线局域网(vRAN)和5G、智能电网、预测性维护和远程监控等使用案例。




亚马逊云 科技 将数据分析、处理和存储都部署得更接近终端,使用户能够在AWS数据中心之外也能部署工具和API环境。

通过Amazon边缘服务,用户可以创建能够高性能应用程序,这些应用程序可以在接近数据生成的位置就进行处理。最终实现智能化、实时响应和极低的延迟。


· Amazon允许用户只构建一次应用程序,就将其同时部署在边缘和云端上。作为完全管理的服务,Amazon将云服务、基础设施和工具扩展到任何本地数据中心或协同定位区域,为终端用户提供了从云端到边缘的整体一致性。

· 边缘Amazon,使用户能够解锁深度和广泛的边缘使用功能。用户可以实现为特定用例去创建功能,如混合云、物联网、5G和工业机器学习。超过200个集成的设备服务为用户提供了广泛的选择,以快速部署边缘应用程序,并有效地扩展到数十亿个设备。

· Amazon基础设施可以帮助客户维护从云计算到边缘环境的高标准的安全性和法规遵从性。这使得用户能够可靠地存储和处理需要处于边缘或保留在本地部署的数据。

定价:您可以使用Amazon定价计算器生成估价或联系Amazon以获得更多定价信息。



通过Azure Stack Edge,微软提供了一种托管服务,将Azure的计算、智能和存储放到了边缘。因此,Azure Stack Edge适用于机器学习的边缘,边缘到云网络的数据传输,以及边缘和物联网解决方案。

Azure Stack Edge允许用户运行边缘来计算工作负载,并通过在人工智能(AI)和物联网工作负载的边缘环境中使用计算和硬件加速的机器学习来提供快速分析。



· Azure Stack Edge用户可以通过硬件加速的人工智能和ML来分析他们的数据,以获得快速、可执行的分析。他们可以在Azure或通过Azure认知服务中创建和训练机器学习模型,并使用NVIDIA TP4 GPU或Intel VPU在本地加速结果。用户还可以将数据子集上传到完整的数据集到云端以保留模型,从而使他们的边缘设备更加智能。

· Azure Stack Edge支持对Azure的优化数据传输,同时保持对文件的本地访问。

Azure Stack Edge价格:最低Azure Stack Edge Pro2(不包含运费)402美元,其他的Azure Stack Edge Pro,ProR,和MiniR的价格都高于Pro2。请访问Azure Stack Edge定价页面来获取自定义定价信息。



ClearBlade是一家边缘计算公司,使企业能够快速实时地设计和运行可扩展的和鲁棒的物联网应用程序。无论是在本地、云端中还是在边缘,ClearBlade都能安全平稳运行。它可以帮助企业实时、大规模地消费、分析、调整,做出数据决策。

此外,通过充分利用本地计算、人工智能和可与任何企业系统集成的单一平台的可 *** 作的可视化,用户可以最大限度地发挥他们位于边缘的数据的影响。


· ClearBlade为安全而构建,为其客户提供API访问的身份验证、授权和加密。这一点也扩展到令牌和证书。

· ClearBlade通过MQTT、套接字和REST为用户提供连接。它还充分利用了预构建模式,特别是为Zigbee(低功耗局域网协议)、BLE(低功耗蓝牙模块)和Thread等技术。

· 客户无需担心互联网连接中断的影响,因为设备会继续进行实时运行,保持100%的正常运行时间。

· 无论用户是选择为客户开发独立的边缘应用程序,还是选择在云端上进行开发然后推送到边缘,CleerBlade都能确保代码随处可用。

定价:虽然ClearBlade提供了演示,但需要联系该公司才能获取定制化价格信息。



戴尔技术充分利用一系列的计算、存储和网络功能来连接几乎任何边缘部署。

戴尔提供了戴尔边缘网关、VxRail超聚合基础设施(HCI)和由英特尔至强处理器驱动的戴尔EMC PowerEdge服务器。并且,该公司还有边缘计算管理和编制功能。

戴尔在许多行业都有边缘解决方案,其中包括制造业、数字城市、零售、医疗保健、公用事业和交通运输等行业。


· 戴尔技术公司希望通过确保边缘的 *** 作环境来为客户简化边缘。当用户进行扩展时,戴尔技术就将数据管理和 *** 作进行整合和简化,因为扩张时,需要权衡的往往是效率和简洁性。同时,戴尔还可以帮助用户控制环境延迟的限制。

· 戴尔帮助客户战略性地达成他们的边缘政策,并进行环境评估,以创建有效的计划,来产生可 *** 作的分析结果。

· 戴尔提供了简化和整合信息、 *** 作技术的解决方案,以帮助用户轻松地扩展其能力。

定价:戴尔技术公司尚未公布他们的价格体系,需联系戴尔公司获取定制化报价。


EdgeConneX是一家全球数据中心提供商,它负责创建和运营有效的、高度接近的特制化的数据中心,而这些数据中心是根据世界任何地方任何部署条件下最佳功率、大小和位置的需求来定制的。

此外,EdgeConneX在30多个市场中运营着至少40个数据中心,服务的市场范围从超本地到超大规模皆有,这些市场对公司客户来说是至关重要的。


· 提供减少延迟的解决方案,并帮助客户靠近消费者、云服务、网络、物联网设备或企业。

· 通过为每个机架提供高达30kW的高密度电源,为服务器和应用程序提供高水平的容量和效率。

· 通过EdgeOS,用户使用一个特殊的自我管理应用程序,使得所有数据中心 *** 作层面对其都具可见性。

· 优化数字内容的交付和分发,以确保有效的受众体验,从而获得更好的受众保留率和客户采用率,最终有助于将高价值的数字内容货币化。

· EdgeConneX积极参与用户合作,提供超低延迟解决方案,范围从增强现实、虚拟现实、自动驾驶 汽车 到5G和物联网。

定价:请联系EdgeConneX以获得准确的价格信息。



Secion坚持新型DevOps原则,为工程师提供灵活性和 *** 控性,在任何工作负载下、任何地点都可运行。该平台采用基于容器的方法来实现>

2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。

截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。

目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。

政策推动我国物联网高速发展

自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》

政策推动我国物联网高速发展

自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10533325.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存