物联网的体系结构

物联网的体系结构,第1张

物联网的英文名称为"The Internet of Things” 。由该名称可见,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,扩展到了任其用户端延伸和何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、 全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
EPC系统是一个非常先进的、综合性的和复杂的系统。其最终目标是为每一单品建立全球的、开放的标识标准。它主要由全球产品电子代码(EPC)体系、射频识别系统及信息网络系统三大部分组成。
(1)EPC编码标准
EPC编码是EPC系统的重要组成部分,它是对实体及实体的相关信息进行代码化,通过统一并规范化的编码建立全球通用的信息交换语言。
(2)EPC标签
EPC标签是装载了产品电子代码的射频标签,通常EPC标签是安装在被识别对象上,存储被识别对象相关信息。标签存储器中的信息可由读写器进行非接触读/写。
32 EPC系统特点
(1)开放的体系结构
EPC系统采用全球最大的公用的刀又TERNET网络系统。这就避免了系统的复杂性,同时也大大降低了系统的成本,并且还有利于系统的增值。梅特卡夫(Metcalfe)定律表明,一个网络大的价值是用户本系统是应该开放的结构体系远比复杂的多重结构更有价值。
(2)独立的平台和高度的互动性
EPC系统识别的对象是一个十分广泛的实体对象,因此,不可能有那一种技术适用所有的识别对象。同时,不同地区,不同国家的射频识别技术标准也不相同。所以开放的结构体系必须具有独立的平台和高度的交互 *** 作性。EPC系统网络建立在INTERNET网络系统上可以与INTERNET网络所有可能的组成部分协同工作
(3)灵活的可持续发展的体系
EPC系统是一个灵活的开放的可持续发展的体系,可在不替换原有体系的情况下就可以做到系统升级。整体的EPC网络 *** 作依赖于RFID系统和网络应用系统的介入,使产品信息有效的传播。安装在不同需求链环境的解读器可以读取标签中储存的产品数据。因此供应链数据可以通过网络及时地检查、更新或者交换信息。
33 EPC编码编码标准
EPC码是新一代与EAN/UPC码兼容的编码标准,在EPC系统中EPC编码与现行GTIN相结合,因而EPC并不是取代现行的条码标准,而是由现行的条码标准逐渐过渡到EPC标准或者是在未来的供应链中EPC和EAN.UCC系统共存。EPC中码段的分配是由EAN.UCC来管理的。在我国,EAN.UCC系统中GTIN编码是由中国物品编码中心负责分配和管理。同样,ANCC也即将启动EPC服务来满足国内企业使用EPC的需求。
EPC码是由一个版本号加上另外三段数据(依次为域名管理者、对象分类、序列号)组成的一组数字。其中版本号标识EPC的版本号,它使得EPC随后的码段可以有不同的长度;域名管理是描述与此EPC相关的生产厂商的信息。
第四章 物联网在家庭中应用
随着时代的发展,中国已经逐步进入了老龄化社会,以后我们社会面临的现状将是一对年轻的夫妻,在照看自己小孩的同时,还要照看2~6对老人,这就为全社会出了一个难题。每家都雇保姆,显然不现实;那么,只能通过科技的手段来解决这个问题了,靠提高家庭的生活品质、方便家庭与外界的信息交互、用传感节点感知家里发生的情况等,这就为家庭物联网的实现奠定了社会基础。
物联网的概念正大行其道,也使人们看到了社会未来的发展趋势,然而物联网大部分却停留在概念阶段,真正规模应用还有待时日。家庭区域相对狭小、需求比较明确,最有可能优先实现物联网的应用。它不只是现代家庭现实的需要(照看老人、孩童),更是人们日益增强的家庭安全
41家庭物联网应用领域
寒冷的冬季,供暖系统使北方城市家庭充满温暖,而当白天大部分人离家上班的时候,空空的房间仍温暖如春。我们需要一个智能化的供暖控制系统。在生产安全领域,在食品卫生领域,在工程控制领域,在城市管理领域,在人们日常生活的各个方面,甚至在人们的娱乐活动中,都需要建立随时能与物体沟通的智能系统。通过装置在各类物体上的电子标签(RFID),传感器、二维码等经过接口与无线网络相连,从而给物体赋予智能,可以实现人与物体的沟通和对话也可以实现物体与物体相互间的沟通和对话。在电度表上装上传感器,供电部门随时都可知道用户的用电情况,实现用电检查、电能质量监测、负荷管理、线损管理、需求侧管理等高效一体化管理,一年来降低电损。在电梯装上传感器,当电梯发生故障时,无需乘客报警、电梯管理部门会借助网络在第一时间得信息,以最快的速度去现场处理故障。
42发展历程
1999年,物联网的概念就已被提出,10年间,世界各国都在加紧研究。物联网的发展共分为四个阶段:第一个阶段是大型机、主机的联网,第二个阶段是台式机、笔记本与互联网相联,第三个阶段是手机等一些移动设备的互联,第四阶段是嵌入式互联网兴起阶段,更多与人们日常生活紧密相关的应用设备,包括洗衣机、冰箱、电视、微波炉等都将加入互联互通的行列,最终形成全球统一的“物联网”。
对于互联网来说,20世纪80年代是黄金时代,这段时间出了一个知名的人物——鲍勃•卡恩(BobKahn),他被人们称为互联网之父(被赋予同样称呼的人还有好几个)。在为互联网做出卓越贡献的同时,他也非常有远见的为另一个始于上世纪80年代的项目——分布式传感网(DistributedSensorNet,简称DSN)——做了奠基。在那个年代,传感器远比我手上的这个大得多,要用一辆卡车来拉。这么大的传感器作为一个个节点组织在一起,通过微波彼此相连,就组成了传感网。
庞大的传感器在体积方面跟不上人们对其功用上的期望,于是研究者们就开始思考能不能把它做得小一点、再小一点。于是,在上世纪90年代,“智能微尘”(SmartDust)这个很有意思的概念出现了,提出者是KrisPister,他是加州大学伯克利分校的教授。这一概念认为可以将计算和通讯集成在约1~2平方毫米的超微型传感器中,用以对周围环境的参数进行探测。其核心的成分是微电机系统(Micro-Electro-MechanicalSystem,简称MEMS;这个概念在当时引起非常大的轰动),该系统中可以集成很多和机械有关的传感器。
当时KrisPister这批人有一个幻想——在蒲公英上面悬挂一个传感芯片,蒲公英飞到哪里就探测哪里的信号,再把信号传递回来。虽然只是一个假想,但当时真有科学家信心百倍地投入其中,并且还把所需的数据算出来了。比如有空气动力学专家计算出了芯片应有的重量等等。在2001年,加州大学伯克利分校的实验室真做出了这种理想中的芯片雏形,比米粒还小,可谓“细如发丝,薄如蝉翼”。他们送给了我一个,当时我还精心包装了一下。可惜最近找不到了,特别遗憾。倘若芯片里面还有电留存的话,说不定我就能通过网络定位到它的“安身之所”了。
在这一时期,有三所高校和研究机构在传感器领域处于领军地位,一是加州大学伯克利分校(以KrisPister为代表,他们提出了“智能微尘”理论),另外两个是加州大学洛杉矶分校(他们提出了“微无线技术”)和施乐帕克研究中心(XeroxPARC)。施乐帕克研究中心的团队主要由我带领,我们做的是传感信息处理和“智能物质”(SmartMatter),希望能把计算、微电机系统放到物理世界中,与“智能微尘”也有非常紧密的联系。
自本世纪初以来,对于传感的研究越来越受到人们的重视,有很多学校和大公司的研发机构开始进行了类似的研究,并有许多新兴公司借此东风异军突起。将传感器连接成“网”或“系统”,就成了传感网。除了传感网以外,类似的概念也相继提出,比如“CyberPhysicalSystem”和“InternetofThings”(简称IOT)。相较而言,IOT的概念在提出的初期更接近于日常生活,比如常见的RFID(RadioFrequencyIdentification,射频识别)技术就是它的一部分。
关于传感网和物联网的历史,若从大的传感器开始算起,传感网诞生至今应有30年了;而若从微传感网(MicroWirelessSensorNetwork)来说,应该仅有15至20年:微传感网始于上世纪90年代,那个时期的人们刚刚提出“微电机系统”的概念,试图把传感器和计算机处理和通讯全部都集成在一个芯片上,即“智慧微尘”。
其实传感器的历史,归结起来就八个字——从大到小,以点到面。这八个字看似简单,但做起来却是困难重重——要想让传感器真正“飞入寻常世界中”,它必需在体积、造价、能耗等方面进行“瘦身”,这样它才真正能够进入到物理世界。
然而,造型的缩小并不是传感进入生活的唯一条件,还需要互联网技术的配合以实现从点到面的网际联系。就IP地址而言,物联网应采用IPv6(IPv4必然不够),它有128位两进制的IP网址数,这相当于给世界上的每个沙粒都赋予了一个 IP地址。唯有当所有的物体都有一个属于自己的IP的时候,物联网才能真正实现。总而言之,物联网的实现需要这两方面的相辅相成:一是利用微处理技术(micro-fabrication),提高集成度;其二是运用IP技术,以提供足够丰富的网址。
43面临的问题
国内智能家居市场存在很多问题。1、进入门槛较高,一般一次性投入要1、2万元,这就大大限制了中等收入以下人群的购买需求。2、功能华而不实,很多都是遥控个灯光、音响,需求跟投入不成比例。3、生搬硬套,将原来很多工业上使用的东西直接照搬到家庭里,缺少人性化,不能完全适合家居生活需要。4、很多智能家居企业缺少核心技术,东拼西凑,组成个系统就推广,导致成本增高、企业竞争力下降。
RFID超高频技术在我国的应用尚处于起步阶段,一些项目的应用只是试点,还没有得到广泛应用,也没有在供链上应用。比如,只在某一个仓库里应用,或只在生产线上应用。应该说,这些试点项目全
都属于闭环状态的应用,在供应链上串起来应用的案例国内还没有出现。
物联网发展潜力无限,但物联网的实现并不仅仅是技术方面的问题,建设物联网过程将涉及到许多规划、管理、协调、合作等方面的问题,还涉及标准和安全保护等方面的问题,这就需要有一系列相应的配套政策和规范的制订和完善。
首先是技术标准问题。标准是一种交流规则,关系着物联网物品间的沟通。各国存在不同的标准,因此需要加强国家之间的合作,以寻求一个能被普遍接受的标准。
其次是安全的问题。物联网中的物品间联系更紧密,物品和人也连接起来,使得信息采集和交换设备大量使用,数据泄密也成为了越来越严重的问题。如何实现大量的数据及用户隐私的保护,成为待解决的问题。
第三,协议问题。物联网是互联网的延伸,在物联网核心层面是基于TCP/IP,但在接入层面,协议类别五花八门,CPRS、短信、传感器、TD-SCDMA、有线等多种通道,物联网需要一个统一的协议基础。
第四,终端问题。物联网终端除具有本身功能外还拥有传感器和网络接入等功能,且不同行业需求各异议,如何满足终端产品的多样化需求,对运营商来说的一大挑战。
第五,地址问题。每个物品都需要在物联网中被寻址,就需要一个地址。物联网需要更多的IP地址,IPv4资源即将耗尽,那就需要IPv6来支撑。IPv4 向IPv6过渡是一个漫长的过程,因此物联网一旦使用IPv6地址,就必然会存在与IPv4兼容性问题。
第六,费用问题。目前物联网所需的芯片等组件的费用较高,若把所有物品都植入识别芯片花费自然不少,如何有效解决这一问题仍需考虑。
第七,规模化问题。规模化是运营商业绩的重要指标,终端的价格、产品多样性、行业应用的深度和广度都会地用户规模产生影响,如何实现规模化是具有待商讨的问题。
第八,商业模式问题。物联网在商业应用方面的业务模式还不是很明朗,商业模式问题值得更进一步探讨。
第九,产业链问题。物联网所需要的自动控制、信息传感、射频识别等上游技术和产业已成熟或基本成熟,而下游的应用也单体形式存在。物联网的发展需要产业链的共同努力,实现上下游产业的联动,跨专业的联动,从而带动整个产业链,共同推动物联网发展。
要建立一个有效的物联网,有两大难点必须解决:一是规模性,只有具备了规模,才能使物品的智能发挥作用;二是流动性,物品通常都不是静止的,而是处于运动的状态,必须保持物品在运动状态,甚至高速运动状态下都能随时实现对物品的监控和追踪。
实现物联网,首先必须在所有物品中嵌入电子标签等存储体,并需安装众多读取设备和庞大的信息处理系统,这必然导致大量的资金投入。因此,在成本尚未降至能普及的前提下,物联网的发展将受到限制。已有的事实均证明,在现阶段,物联网的技术效率并没有转化为规模的经济效率,目前的所谓物联网应用也没有一个在商业上获得了较大成功。例如,智能抄表系统能将电表的读数通过商用无线系统(如GSM短消息)传递到电力系统的数据中心,但电力系统仍没有规模使用这类技术,原因在于这类技术没有经济效率。
物联网的关键在于RFID、传感器、嵌入式软件及传输数据计算等领域,包括“云计算”、无线网络的扩容和优化等均是物联网普及需解决的问题。只有通过“云计算”技术的运用,才能使数以亿计的种类物品的实时动态管理变得可能。从目前国内产业发展水平而言,传感器产业人水平较低,高端产品为国外厂商垄断。

物联网是一个非常先进的、综合性的和复杂的系统。其最终目标是为单个产品建立全球的、开放的标识标准,并实现基于全球网络连接的信息共享。物联网主要由六方面组成:EPC编码、EPC标签、识读器、Savant(神经网络软件)、对象名解析服务(Object NamingService:ONS)和实体标记语言(Physical Markup Language PML)。
aEPC编码。EPC编码是物联网的重要组成部分。它是对实体及实体的相关信息进行代码化通过统一并规范化的编码建立全球通用的信息交换语言。EPC编码是EANUCC在原有全球统一编码体系基础上提出的新一代的全球统一标识的编码体系,是对现行编码体系的一个补充。EPC编码有3类7种类型,分别为EPC-64- I、EPC-64- II、EPC-64-III,EPC-96- I、EPC-256- I、EPC-256-II、EPC-256-111。
b射频识读器。在射频识别系统中,射频读写器是将标签中的信息读出,或将标签所需要存储的信息写入标签的装置。射频读写器是利用射频技术读取标签信息、或将信息写入标签的设备。读写器读出的标签的信息通过计算机及网络系统进行管理和信息传输。
c神经网络软件(Savant)。每件产品都加上RFID标签之后,在产品的生产、运输和销售过程中,识读器将不断收到一连串的产品电子编码。整个过程中最为重要、同时也是最困难的环节就是传送和管理这些数据。Auto-ID中心提出一种名叫Savant的软件中间件技术,相当于该新式网络的神经系统,负责处理各种不同应用的数据读取和传输。
d对象名解析服务(ObjectN ame Service对象名服务,简称ONS)EPC标签对于一个开放式的、全球性的追踪物品的网络需要一些特殊的网络结构。因为标签中只存储了产品电子代码,计算机还需要一些将产品电子代码匹配到相应商品信息的方法。这个角色就由对象名称解析服务担当,它是一个自动的网络服务系统。
e实体标记语言(PhysicalM arkupLanguage物理标识语言,简称PML)oEPC产品电子代码识别单品,但是所有关于产品有用的信息都用一种新型的标准计算机语言—实体标记语言(PML)所书写,PML是基于为人们广为接受的可扩展标识语言(XM功发展而来的。PML提供了一个描述自然物体,过程和环境的标准,并可供工业和商业中的软件开发、数据存储和分析工具之用。它将提供一种动态的环境,使与物体相关的静态的、暂时的、动态的和统计加工过的数据可以互相交换。因为它将会成为描述所有自然物体、过程和环境的统一标准,PML的应用将会非常广泛,并且进入到所有行业。

物联网的体系结构可以分为感知层,网络层和应用层三个层次。利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络。

物联网的体系架构有三层,分别是:
1、感知层,物联网依靠感知层识别物体和采集信息;
2、网络层,实现对传输的信息进行融合等处理;
3、应用层,是物联网和用户的接口,能够针对不同用户及不同行业的应用,提供相应的管理平台和运行平台。
感知层犹如人的感知器官,物联网依靠感知层识别物体和采集信息。感知层包括信息采集和通信子网两个子层。以传感器、二维码、条形码、RFID、智能装置等作为数据采集设备,并将采集到的数据通过通信子网的通信模块和延伸网络与网络层的网关交互信息。延伸网络包括传感网、无线个域网(WPAN)、家庭网、工业总线等。
感知层的主要组成部件有传感器和传感器网关,包括多种发展成熟度且差异性很大的技术,如二维码技术、RFID技术、温/湿度传感、光学摄像头、GPS设备、生物识别等各种感知设备。
在感知层中目前嵌入有感知器件和射频标签(RFID)的物体形成局部网络,协同感知周围环境或自身状态,并对获取的感知信息进行初步处理和判决,以及根据相应规则积极进行响应,同时,通过各种接入网络把中间或最终处理结果接入到网络层。

物联网分为的三层分别是网络层、应用层、感知层:

1、网络层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。

2、应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。

3、感知层由各种传感器以及传感器网关构成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。

物联网相关技术

1、地址资源

物联网的实现需要给每个物体分配唯一的标识或地址。最早的可定址性想法是基于RFID标签和电子产品唯一编码来实现的。

另一个来自语义网的想法是,用现有的命名协议,如统一资源标志符来访问所有物品(不仅限于电子产品,智能设备和带有RFID标签的物品)。这些物品本身不能交谈,但通过这种方式它们可以被其他节点访问,例如一个强大的中央服务器。

2、人工智能

自主控制也并不依赖于网络架构。但目前的研究趋势是将自主控制和物联网结合在一起在未来物联网可能是一个非决定性的、开放的网络,其中自组织的或智能的实体和虚拟物品能够和环境交互并基于它们各自的目的自主运行。

目前公认的有三个:
1、感知层:感知层是物联网的皮肤和五官—识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS等。主要作用是识别物体,采集信息,与人体结构中皮肤和五官的作用相似。
2、网络层:网络层是物联网的神经中枢和大脑—信息传递和处理。网络层包括通信与互联网的融合网络、网络管理中心和信息处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。唯康教育,
3、应用层:应用层是物联网的“社会分工”—与行业需求结合,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,与行业需求结合,实现行业智能化,这类似于人的社会分工,最终构成人类社会!

1 物联网的标准体系

2 急需的物联网总体标准
3 传感器标准
4 传感器标准
5 传感器标准进展情况
6 传感器标准体系框架

认知感知层

1.感知层的概念

物联网层次结构分为三层,分别为感知层、网络层、应用层。感知层位于最 底层,它是物联网的核心,其功能为“感知”,即通过传感网络获取环境信息。 感知层是物联网的核心,是信息采集的关键部分。

2.感知层的应用

感知层包括二维码标签及识读器、RFID 标签及读写器、摄像头、GPS 导航、 各种功能传感器、M2M 终端、传感器网关等,主要功能是识别物体、采集信息, 与人体结构中皮肤和五官的作用类似。

3.感知层的关键技术

(1) 传感器:传感器是物联网中获得信息的主要设备,它利用各种机制把被 测量转换为电信号,然后由相应信号处理装置进行处理,并产生响应动作。 (2)RFID:它的全称为 Radio Frequency Identification,即射频识别, 又称为电子标签。RFID 是一种非接触式的自动识别技术,可以通过无线电讯号 识别特定目标并读写相关数据。它主要用来为物联网中的各物品建立唯一的身份 标示。

(3)无线传感网络:它的英文名称为 Wireless Sensor Network,简称 WSN。 传感器网络是一种由传感器节点组成网络,其中每个传感器节点都具有传感器、 微处理器和通信单元。节点间通过通信网络组成传感器网络,共同协作来感知和 采集环境或物体的准确信息。它是目前发展迅速,应用最广的传感器网络。

认知网络层

1 网络层的概念

网络层位于物联网三层结构中的第二层,它功能是通过通信网络进行信息传 输。网络层作为纽带连接着感知层和应用层,它由各种私有网络、互联网、有线 和无线通信网等组成,相当于人的神经中枢系统,负责将感知层获取的信息,安 全可靠地传输到应用层,然后根据不同的应用需求进行信息处理。

2 网络层的组成

物联网网络层包含接入网和传输网,分别实现接入功能和传输功能。传输网 由公网与专网组成,典型传输网络包括电信网、广电网、互联网。接入网包括光 纤接入、无线接入、以太网接入、卫星接入等各类接入方式,实现底层的传感器 网络、RFID 网络最后一公里的接入。

3 网络层的主要技术

物联网用到的通信技术主要包括 3G/4G 通信、IPv6、WI-FI 和 WIMAX、蓝牙、 ZigBee 自组网技术等。正在向更快的传输速率,更宽的传输宽带、更高的频谱 利用率、更智能化的接入和网络管理发展。
认知应用层

1 应用层的概念

应用层位于物联网三层结构中的最顶层,它的功能是通过云计算等计算平台 进行信息处理。应用层与最低端的感知层一起,是物联网的显著特征和核心所在, 应用层可以对感知层采集数据进行计算、处理和知识挖掘,从而实现对物理世界 的实时控制、精确管理和科学决策。

2 应用层的技术

(1)物联网应用:它是用户直接使用的各种应用,通常用应用软件的形式 表现。如智能 *** 控、安防、电力抄表、远程医疗、智能农业等。

(2)物联网中间件:物联网中间件是一种独立的系统软件或服务程序,将 各种可以公用的能力进行统一封装,提供给物联网应用使用。

(3)云计算:它对物联网海量数据的存储和分析。根据服务类型不同将云 计算分为:基础架构即服务(IaaS)、平台即服务(PaaS)、服务和软件即服务(SaaS)。

3 应用层与其他两层的关系 感知层将采集到的数据通过网络层传递给应用层,应用层将接收到的数据进 行分析管理,再将这些数据根据各行各业的应用做出反应处理。例如,在智能电 网中的远程电力抄表应用:安置于用户家中的读表器上显示感知层中的传感器采 集到的数据,通过网络层将数据发送并汇总到发电厂的处理器上,该处理器及其 对应工作就属于应用层,它将完成对用户用电信息的分析,并自动采取相关措施。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10541421.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存