物联网可分为三层:网络层、应用层、感知层。
网络层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。
应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。
感知层由各种传感器以及传感器网关构成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。
感知层的作用相当于人的眼耳鼻喉和皮肤等神经末梢,它是物联网识别物体、采集信息的来源,其主要功能是识别物体,采集信息。
扩展资料:
相关技术
1、地址资源
物联网的实现需要给每个物体分配唯一的标识或地址。最早的可定址性想法是基于RFID标签和电子产品唯一编码来实现的。
另一个来自语义网的想法是,用现有的命名协议,如统一资源标志符来访问所有物品(不仅限于电子产品,智能设备和带有RFID标签的物品)。这些物品本身不能交谈,但通过这种方式它们可以被其他节点访问,例如一个强大的中央服务器。
2、人工智能
自主控制也并不依赖于网络架构。但目前的研究趋势是将自主控制和物联网结合在一起在未来物联网可能是一个非决定性的、开放的网络,其中自组织的或智能的实体和虚拟物品能够和环境交互并基于它们各自的目的自主运行。
3、架构
在物联网中,一个事件信息很可能不是一个预先被决定的,有确定句法结构的消息,而是一种能够自我表达的内容,例如语义网。
相应地,信息也不必要有着确定的协议来规范所有可能的内容,因为不可能存在一个“终极的规范”能够预测所有的信息内容。
那种自上而下进行的标准化是静态的,无法适应网络动态的演化,因而也是不切实际的。在物联网上的信息应该是能够自我解释的,顺应一些标准,同时也能够演化的。
4、系统
物联网中并不是所有节点都必须运行在全球层面上,比如TCP/IP层。举例来讲,很多末端传感器和执行器没有运行TCP/IP协议栈的能力,取而代之的是它们通过ZigBee、现场总线等方式接入。
这些设备通常也只有有限的地址翻译能力和信息解析能力,为了将这些设备接入物联网,需要某种代理设备和程序实现以下功能:在子网中用“当地语言”与设备通信。
将“当地语言”和上层网络语言互译;补足设备欠缺的接入能力。因此该类代理设备也是物联网硬件的重要组成之一。
参考资料来源:百度百科--物联网
1什么是物联网
物联网就是利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络。物联网其实就是互联网的延伸,它包括互联网及互联网上所有的资源,兼容互联网所有的应用,但物联网中所有的元素都是个性化和私有化。
物联网的影响
物联网成熟之后,真正实现了万物互联,即“人与人、人与物、物与物”互联,世间一切都连接起来。物联网使得连接起来的终端呈指数级增长,产生的数据也会呈指数级增长。物联网必将是下一个推动世界高速发展的“重要生产力”,一方面可以提高经济效益,很大基础上节约成本;另一方面可以为全球经济的复苏提供技术动力,将是继通信网之后的另一个万亿级市场。
把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。
2什么是区块链
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。
区块链的特点
广义上来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和 *** 作数据的一种全新的分布式基础架构与计算范式。
区块链采取分布式数据存储、点对点传输、共识机制、加密算法等技术,具有去中心化、开放性、自治性、不可篡改性、匿名性等特点,能够有效地在不同节点之间建立信任、获取权益。
区块链的应用
区块链最早的应用是数字货币,比特币是最具有典型代表,目前1比特币的价格已经超过40000人民币,其他的还有litecoin、dogecoin、dashcoin等等。
目前,区块链应用最广的是金融领域,此外还在智能合约、证券交易、电子商务、物联网、社交通讯、文件存储、存在性证明、身份验证、股权众筹、版权保护等领域有广泛应用。
3什么是大数据
其实简单的来说,大数据就是通过分析和挖掘全量的非抽样的数据辅助决策。
大数据的特征
大数据是指以服务于决策为目的,需要新型数据处理模式才能对其内容进行采集、存储、管理和分析的海量、高增长率和多样化的信息资本。
大数据具有如下本质特征:
1根本目的是服务于决策,大数据能够帮助各类组织和个人大幅度提升决策能力,做出更好的决策和判断;
2量度大,大数据通常是指100T以上的数据量,这难以依靠传统的计算手段有效计算,而必须依靠新的计算手段和数据挖掘工具;
3频率高,大数据是用户参与与互动而产生的数据,根据用户的网络痕迹来及时地了解用户的相关数据,这种数据是按照天甚至小时来计的高频数据。而传统的数据频率都很低,很多数据是按照月甚至按照年份来计算的;
4速度快,大数据是实时性的数据,能够实时反应。例如,在百度搜索框输入一个关键词,能够瞬间呈现,而传统的数据收集方式则是严重滞后的;
5永远在线。在线是大数据的前提条件,从这个角度来说,大数据是永远在线的,能够随时被调用的。大数据通过分析各种网络终端上的用户痕迹,能够更好地分析用户的行为、情感、思想、爱好与需求,来更好地进行决策和分析。
大数据的三大关键点
首先,数据的可获得度。目前在国内,大数据的发展严重受制于政府信息的公开性不够,很多数据难以获得,导致难以实现真正的大数据挖掘和分析,这就要求政府及时开放更多的数据,以提高数据的可获得度。
其次,进行科学的模型建构。模型的科学性直接决定着数据分析的质量,这就要求有高超的建模水平,当然数据量越多也有助于模型的合理构建。
第三,利用专家对观点进行提炼。为决策提供依据的基于数据挖掘的独到、高质量的观点,高度依赖于高质量的数据解释,这就体现了行业专家的价值。
物联传媒提供
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)