物联网层次结构是怎样的

物联网层次结构是怎样的,第1张

物联网架构按层级来划分可分为3个层级: 感知层、传输层、应用层。

首先底层是用来感知数据的感知层,感知层包括传感器等数据采集设备,包括数据接入到网关之前的传感器网络。感知层是物联网发展和应用的基础,RFID技术、传感和控制技术、短距离无线通信技术是感知层涉及的主要技术,其中又包括芯片研发、通信协议研究、RFID材料、智能节电供电等细分技术。

第二层是数据传输的传输层,网络层中的感知数据管理与处理技术是实现以数据为中心的物联网的核心技术,其包括传感网数据的存储、查询、分析、挖掘、理解及基于感知数据决策和行为的理论和技术。云计算平台作为海量感知数据的存储、分析平台,将是物联网网络层的重要组成部分。

最上层是应用层,物联网的应用层利用经过分析处理的感知数据为用户提供丰富的特定服务,可分为监控型(物流监控、污染监控)、查询型(智能检索、远程抄表)、控制型(智能交通、智能家居、路灯控制)、扫描型(手机钱包、高速公路不停车收费)等。应用层是物联网发展的目的,软件开发、智能控制技术将会为用户提供丰富多彩的物联网应用。

如果以人的神经网络做类比,那么人的感觉器官就是物联网的感知层,如眼睛能采集视觉信息,鼻子采集气味信息,嘴巴采集味道信息,而耳朵采集声音信息。这些信息通过神经元传递到大脑中枢,那么这些神经元形成的神经传输通道就相当于物联网中的传输层,它的作用是把信息传送到处理中心。那么人的大脑就相当于应用层了,当它接受到来自眼睛,鼻子、嘴巴、耳朵等信息后,它可以综合去得出一些有用的结论,例如判断现在是否有危险,能够读书看等,这就相当于它应用了来自感知层的信息并产生了价值。

像工业网关在物联网中就是负责传输数据的,爱陆通的工业物联网网关是基于5G/4G、WIFI、虚拟专网等技术开发的。以嵌入式 *** 作系统为软件支撑平台,同时支持1个千兆以太网WAN、4个千兆以太网LAN、1个RS232/RS485(可选)接口和24G/58G WIFI接口,可同时连接串口设备、以太网设备和 WIFI 设备。

NB-IOT是基于蜂窝的窄带无赖网成为万物互联网的一个重要分支。NB-IOT构建与蜂窝网络,消耗大约180KHZ的宽带,可直接部署于GSM网络、UMTS网络或者LTE网络,以降低部署成本、实现平滑升级。NB-IOT是IOT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫做低功耗广域网,支持待机时间长、对网络连接要求较高的设备的高效连接。

NB-IOT的优势

强链接:

在同一基站的情况下,NB-IOT可以比现有无线技术提供50—100倍的接入数。一个扇区能够支持10万个连接,支持低延时敏感度、超低的设备成本、低设备功耗和优化的网络结构。

高覆盖:

NB-IOT室内覆盖能力强,比LTE提升20DB增益,相当于提升了100倍覆盖区域能力。不仅可以满足农村这样的广覆盖需求,对于厂区、地下车库、井盖这类对深度覆盖有要求的应用同样适用。

低功耗:

低功耗特性是物联网应用一项重要指标,特别对于一些不能经常更换电池的设备和场合,如安置于高山荒野偏远地区中的各类传感器监测设备,它们不可能像智能手机一天一充电,长达几年的电池寿命是最本质的需求。NB-IOT聚焦小数据量、小速率应用,因此NB-IOT设备 功耗可以做到非常小。

低成本:

NB-IOT无需重新建网,射频和天线基本上都是服用的。举个例子:就拿中国移动来说,900MHZ里面有一个比较宽的频带,只需要请出来一部分2G的频段,就可以直接进行LTE和NB-IOT的同时部署。低速率、低功耗、低宽带同样给NB-IOT芯片以及模块带来低成本的优势。

窄带物联网的出现,改变了物联网的应用。

国产视觉系统研祥金码品牌比较好。
视觉系统的主要构成,一般分为 5 大部分:照明、镜头、相机、图像采集卡、视觉处理器。随着国内对视觉系统需求的增加,国产品牌SSZN的视觉系统技术从2D到3D不断进步,设备在应用上不断推陈出新,精度越来越高。

一维码/二维码是按照一定的编码规则排列,用以表达一组信息的图形标识符。主要用于产品的追踪追溯,生产控制,自动识别,特别是与新兴的RFID技术一起构成“物联网”的硬件系统之一。
一维码:即俗称的“条形码”,在流通的所有商品如超市售出的所有产品上我们都能找到这类标识。
二维码:是一维码的升级版。由于其比一维码能包含更多的信息、更高的可读取率,在越来越多的产品上使用了二维码(比如新版的火车票,工业类产品的塑料外壳上等都有使用二维码)。服务热线,贴心服务

关于读码器的信息,可以到研祥金码官网进行深入的了解,作为业界少有且性能强大的工业级读码器的Regem Marr研祥金码坚持做工匠精神的践行者,用引以为傲的严谨与专业,耐心、专心、细心打磨好每一款产品。

机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
一个典型的工业机器视觉应用系统包括如下部分:光源,镜头,CCD照相机,图像处理单元(或图像捕获卡),图像处理软件,监视器,通讯/输入输出单元等。首先采用摄像机获得被测目标的图像信号, 然后通过A/ D 转换变成数字信号传送给专用的图像处理系统,根据像素分布、亮度和颜色等信息,进行各种运算来抽取目标的特征,然后再根据预设的判别准则输出判断结果,去控制驱动执行机构进行相应处理。机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。 机器视觉强调实用性,要求能够适应工业现场恶劣的环境,要有合理的性价比、通用的工业接口、较高的容错能力和安全性,并具有较强的通用性和可移植性。 它更强调实时性,要求高速度和高精度。
视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果,如尺寸数据。上位机如PC和PLC实时获得检测结果后,指挥运动系统或I/O系统执行相应的控制动作,如定位和分选。从视觉系统的运行环境分类,可分为PC-BASED系统和PLC-BASED系统。基于PC的系统利用了其开放性,高度的编程灵活性和良好的Windows界面,同时系统总体成本较低。以美国DATA TRANSLATION公司为例,系统内含高性能图像捕获卡,一般可接多个镜头,配套软件方面,从低到高有几个层次,如Windows95/98/NT环境下C/C++编程用DLL,可视化控件activeX提供VB和VC++下的图形化编程环境,甚至Windows下的面向对象的机器视觉组态软件,用户可用它快速开发复杂高级的应用。在基于PLC的系统中,视觉的作用更像一个智能化的传感器,图像处理单元独立于系统,通过串行总线和I/O与PLC交换数据。系统硬件一般利用高速专用ASIC或嵌入式计算机进行图像处理,系统软件固化在图像处理器中,通过类似于游戏键盘的简单装置对显示在监视器中的菜单进行配置,或在PC上开发软件然后下载。基于PLC的系统体现了可靠性高、集成化,小型化、高速化、低成本的特点,代表厂商为日本松下、德国Siemens等。
德国Siemens公司在工业图像处理方面拥有超过20年经验积累,SIMATIC VIDEOMAT是第一个高性能的单色和彩色图像处理系统,并成为SIMATIC自动化系统中极重要的产品。而99年推出的SIMATIC VS710是业内第一个智能化的、一体化的、带PROFIBUS接口的、分布式的灰度级工业视觉系统,它将图像处理器、CCD、I/O集成在一个小型机箱内,提供PROFIBUS的联网方式(通讯速率达12Mbps)或集成的I/O和RS232接口。更重要的,通过PC WINDOWS下的Pro Vision参数化软件进行组态,VS 710第一次将PC的灵活性,PLC的可靠性、分布式网络技术,和一体化设计结合在一起,使得西门子在PC和PLC体系之间找到了完美的平衡。机器视觉系统在印刷包装中的应用 自动印刷品质量检测设备采用的检测系统多是先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;然后拍摄被检测的图像,再将两者进行对比。CCD线性传感器将每一个像素的光量变化转换成电子信号,对比之后只要发现被检测图像与标准图像有不同之处,系统就认为这个被检测图像为不合格品。印刷过程中产生的各种错误,对电脑来说只是标准图像与被检测图像对比后的不同,如污迹、墨点色差等缺陷都包含在其中。
最早用于印刷品质量检测的是将标准影像与被检测影像进行灰度对比的技术,较先进的技术是以RGB三原色为基础进行对比。全自动机器检测与人眼检测相比,区别在哪里以人的目视为例,当我们聚精会神地注视某印刷品时,如果印刷品的对比色比较强烈,则人眼可以发现的、最小的缺陷,是对比色明显、不小于03mm的缺陷;但依靠人的能力很难保持持续的、稳定的视觉效果。可是换一种情况,如果是在同一色系的印刷品中寻找缺陷,尤其是在一淡色系中寻找质量缺陷的话,人眼能够发现的缺陷至少需要有20个灰度级差。而自动化的机器则能够轻而易举地发现010mm大小的缺陷,即使这种缺陷与标准图像仅有一个灰度级的区别。
但是从实际使用上来说,即便是同样的全色对比系统,其辨别色差的能力也不同。有些系统能够发现轮廓部分及色差变化较大的缺陷,而有些系统则能识别极微小的缺陷。对于白卡纸和一些简约风格的印刷品来说,如日本的KENT烟标、美国的万宝路烟标,简单地检测或许已经足够了,而国内的多数印刷品,特别是各种标签,具有许多特点,带有太多的闪光元素,如金、银卡纸,烫印、压凹凸或上光印刷品,这就要求质量检测设备必须具备足够的发现极小灰度级差的能力,也许是5个灰度级差,也许是更严格的1个灰度级差。这一点对国内标签市场是至关紧要的。
标准影像与被检印刷品影像的对比精确是检测设备的关键问题,通常情况下,检测设备是通过镜头采集影像,在镜头范围内的中间部分,影像非常清晰,但边缘部分的影像可能会产生虚影,而虚影部分的检测结果会直接影响到整个检测的准确性。从这一点来说,如果仅仅是全幅区域的对比并不适合于某些精细印刷品。如果能够将所得到的图像再次细分,比如将影像分为1024dpi X 4096dpi或2048dpi X 4096dpi,则检测精度将大幅提高,同时因为避免了边缘部分的虚影,从而使检测的结果更加稳定。
采用检测设备进行质量检测可提供检测全过程的实时报告和详尽、完善的分析报告。现场 *** 作者可以凭借全自动检测设备的及时报警,根据实时分析报告,及时对工作中的问题进行调整,或许减少的将不仅仅是一个百分点的废品率,管理者可以依据检测结果的分析报告,对生产过程进行跟踪,更有利于生产技术的管理。因为客户所要求的,高质量的检测设备,不仅仅是停留在检出印刷品的好与坏,还要求具备事后的分析能力。某些质量检测设备所能做的不仅可以提升成品的合格率,还能协助生产商改进工艺流程,建立质量管理体系,达到一个长期稳定的质量标准。
凹版印刷机位置控制及产品检测
由设置在生产线上的摄像机连续摄取印制品的视频图像,摄像的速度在30 帧/s 以下且可调。摄像机采集到的图像,首先进行量化,将模拟信号转化成数字信号,从中抽取一张有效代表镜头内容的关键帧,并将其显示在显示器上。对于一帧图像,可采用对静止图像的分析方法来处理,通过尺寸测量和多光谱分析可识别出视频图像上各色标,得出色标间距和色标的颜色参数以及一些其他相关。
由于各种因素影响,会出现各种各样的噪声,如高斯噪声、椒盐噪声及随机噪声等。噪声给图像处理带来很多困难,它对图像分割,特征提取,图像识别,具有直接的影响,因此实时采集的图像需进行滤波处理。图像滤波要求能去除图像以外的噪声,同时又要保持图像的细节。当噪声为高斯噪声时,最常使用的是线性滤波器,易于分析和实现;但线性滤波器对椒盐噪声的滤波效果很差,传统的中值滤波器能减少图像中的椒盐噪声,但效果不算理想,即充分分散的噪声被去掉,而彼此靠近的噪声会被保留下来,所以当椒盐噪声比较严重时,它的滤波效果明显变坏。本系统改进型中值滤波法。该方法首先求得噪声图像窗口中去除最大和最小灰度值像素后的中值,然后计算该中值与对应的像素灰度值的差,再与阈值相比较以确定是否用求得的值代替该像素的灰度值。
图像分割在该阶段中检测出各色标并与背景分离,物体的边缘是由灰度不连续性所反映的L 边缘种类可分为两种,其一是阶跃性边缘,它两边的像素的灰度值有显著不同;其二是屋顶状边缘,它位于灰度值从增加到减小的变化转折点L对于阶跃性边缘,其二阶方向导数在边缘处呈零交叉,因而可用微分算子来做边缘检测算子。微分算子类边缘检测法类似于高空间域的高通滤波,有增加高频分量的作用,这类算子对噪声相当敏感,对于阶跃性边缘,通常可用的算子有梯度算子Sobel 算子和Kirsh 算子。对于屋顶状边缘可用拉普拉斯变换和Kirsh 算子。由于色标为长方形,且相邻边缘灰度级相差较大,故采用边缘检测来分割图像。这里采用Sobert 边缘子来进行边缘检测,它是利用局部差分算子来寻找边缘,能较好的将色标分离出来。在实际的检测过程中,采用彩色图像边缘检测方法,选择合适的彩色基(如强度、色度、饱和度等)来进行检测。根据印刷机的类型特点,即印刷机各色的颜色和版图的特点,进行多阈值处理,得到各色的二值图。
将分割后的图像进行测量,通过测量值来识别物体,由于色标为形状规则的矩形,所以可对下述特征进行提取:(1) 由像素计算矩形面积,(2) 矩形度,(3) 色度(H ) 和饱和度(S ),然后根据各色标的间隔的像素点数量得到色标间的间距,与设定值比较,得到两者的差值,共进行m 次测量,取平均差值,给数字交流伺服调节部分提供相应的调节信号。以调节色辊的相对位置,从而消除或减少印刷错位。在特征提取时,对图像进行多光谱图像分析,可以定量地表示色标,如彩色数图像中像素的颜色,采用HIS 格式得到各色标颜色信息的两个参数:色度和饱和度,以此来检测油墨的质量。对各色二值图再进行统计计算或与标准图形进行样板匹配,测量印刷过程中墨屑等参数。
印刷机由开卷机放卷运行依次经过各印刷单元,进行各色的印刷和烘干,由收卷机进行收卷L 每色印刷都会在印料的边沿印上以供套色用的色标,该色标线水平10mm,宽1 mm ,每个相邻颜色的标志线在套印精确时应相互平行,垂直(纵向)相巨20 mm,由设置在生产线上的摄影机连续摄取印制品的视频图像,通过尺寸测量和多光谱分析可识别出视频图像上各色标,得出色标间距和色标的颜色参数L如果相邻两色色标间隔大于或小于20 mm ,则说明套印出现了偏差。将该偏差信号送给伺服变频驱动单元,驱动交流伺服电机,使相应的套色修正辊ML上下移动来延长或缩短印料自上一单元印刷版辊到该单元印刷版辊的行程来动态修正。 在现代包装工业自动化生产中,涉及到各种各样的检查、测量,比如饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等。这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。通常这种带有高度重复性和智能性的工作只能靠人工检测来完成,我们经常在一些工厂的现代化流水线后面看到数以百计甚至逾千的检测工人来执行这道工序,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100%的检验合格率(即零缺陷),而当今企业之间的竞争,已经不允许哪怕是0。1%的缺陷存在。有些时候,如微小尺寸的精确快速测量,形状匹配,颜色辨识等,用人眼根本无法连续稳定地进行,其它物理量传感器也难有用武之地。这时,人们开始考虑把计算机的快速性、可靠性、结果的可重复性,从而引入了机器人视觉技术。
一般地说,首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,如:面积、长度、数量、位置等;最后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。机器视觉的特点是自动化、客观、非接触和高精度,与一般意义上的图像处理系统相比,机器视觉强调的是精度和速度,以及工业现场环境下的可靠性。 机器视觉极适用于大批量生产过程中的测量、检查和辨识,如:对IC表面印字符的辨识,食品包装上面对生产日期的辨识,对标签贴放位置的检查。 在机器视觉系统中;关键技术有光源照明技术、光学镜头、摄像机、图像采集卡、图像处理卡和快速准确的执行机构等方面。在机器视觉应用系统中;好的光源与照明方案往往是整个系统成败的关键;起着非常重要的作用;它并不是简单的照亮物体而已。 光源与照明方案的配合应尽可能地突出物体特征量;在物体需要检测的部分与那些不重要部份之间应尽可能地产生明显的区别;增加对比度;同时还应保证足够的整体亮度;物体位置的变化不应该影响成像的质量。在机器视觉应用系统中一般使用透射光和反射光。 对于反射光情况应充分考虑光源和光学镜头的相对位置、物体表面的纹理;物体的几何形状、背景等要素。光源的选择必须符合所需的几何形状、照明亮度、均匀度、发光的光谱特性等;同时还要考虑光源的发光效率和使用寿命。光学镜头相当于人眼的晶状体;在机器视觉系统中非常重要。 一个镜头的成像质量优劣;即其对像差校正的优良与否;可通过像差大小来衡量;常见的像差有球差、彗差、像散、场曲、畸变、色差等六种。
摄像机和图像采集卡共同完成对物料图像的采集与数字化。 高质量的图像信息是系统正确判断和决策的原始依据;是整个系统成功与否的又一关键所在。 在机器视觉系统中;CCD 摄像机以其体积小巧、性能可靠、清晰度高等优点得到了广泛使用。 CCD 摄像机按照其使用的CCD 器件可以分为线阵式和面阵式两大类。 线阵CCD 摄像机一次只能获得图像的一行信息;被拍摄的物体必须以直线形式从摄像机前移过;才能获得完整的图像;因此非常适合对以一定速度匀速运动的物料流的图像检测;而面阵CCD 摄像机则可以一次获得整幅图像的信息。图像信号的处理是机器视觉系统的核心;它相当于人的大脑。 如何对图像进行处理和运算;即算法都体现在这里;是机器视觉系统开发中的重点和难点所在。 随着计算机技术、微电子技术和大规模集成电路技术的快速发展;为了提高系统的实时性;对图像处理的很多工作都可以借助硬件完成;如DSP、专用图像信号处理卡等;软件则主要完成算法中非常复杂、不太成熟、尚需不断探索和改变的部分。
从产品本身看,机器视觉会越来越趋于依靠PC技术,并且与数据采集等其他控制和测量的集成会更紧密。且基于嵌入式的产品将逐渐取代板卡式产品,这是一个不断增长的趋势。主要原因是随着计算机技术和微电子技术的迅速发展,嵌入式系统应用领域越来越广泛,尤其是其具备低功耗技术的特点得到人们的重视。另外,嵌入式 *** 作系统绝大部分是以C语言为基础的,因此使用C高级语言进行嵌入式系统开发是一项带有基础性的工作,使用高级语言的优点是可以提高工作效率,缩短开发周期,更主要的是开发出的产品可靠性高、可维护性好、便于不断完善和升级换代等。因此,嵌入式产品将会取代板卡式产品。
由于机器视觉是自动化的一部分,没有自动化就不会有机器视觉,机器视觉软硬件产品正逐渐成为协作生产制造过程中不同阶段的核心系统,无论是用户还是硬件供应商都将机器视觉产品作为生产线上信息收集的工具,这就要求机器视觉产品大量采用标准化技术,直观的说就是要随着自动化的开放而逐渐开放,可以根据用户的需求进行二次开发。当今,自动化企业正在倡导软硬一体化解决方案,机器视觉的厂商在未来5-6年内也应该不单纯是只提供产品的供应商,而是逐渐向一体化解决方案的系统集成商迈进。
在未来的几年内,随着中国加工制造业的发展,对于机器视觉的需求也逐渐增多;随着机器视觉产品的增多,技术的提高,国内机器视觉的应用状况将由初期的低端转向高端。由于机器视觉的介入,自动化将朝着更智能、更快速的方向发展。

摘 要 物联网作为一项新兴的技术, 已经引起国内学术界高度重视。针对物联网的发展趋势,介绍了其基本概念和技术背景,以及对所涉及的利益相关者产生安全和隐私的影响。需要采取措施,确保该架构能抵御攻击,进行数据认证,访问控制,建立客户隐私。
关键词 物联网 隐私
中图分类号:C913 文献标识码:A

Talking about the Problems of Internet Things Privacy
HUANG Ling
(College of Electronics and Information Engineering, Nanjing Institute of
Information Technology, Nanjing, Jiangsu 210046)
Abstract IOT(Internet of Things), as an emerging technology, attracts much attention form domestic academia and industry For its trend, this paper describes the basic concept and technical background Its development has an impact on the security and privacy of the involved stakeholders Measures ensuring the architecture"s resilience to attacks, data authentication, access control and client privacy need to be established
Key words Internet of things; privacy

1 物联网:概念和技术背景
物联网(IOT)是一个新兴的基于互联网的信息体系结构,促进商品和服务在全球供应链网络的交流。例如,某类商品的缺货,会自动报告给供应商,这反过来又立即引起电子或实物交付。从技术角度来看,物联网是基于数据通信的工具,主要是RFID(无线电射频识别)标签的物品,通过提供的IT基础设施,促进一个安全和可靠的 “物”的交流的方式。
基于目前普遍的看法,物联网的新的IT基础设施是由EPCglobal和GS1引入的电子产品代码(EPC)。“物”是携带一个特定EPC 的RFID标签的物理对象;基础设施可以给本地和远程的用户提供和查询EPC信息服务(EPCIS)。信息并不完全保存在RFID标签上,通过对象名称解析服务(ONS)的连接和互联。信息可由互联网上的分布式服务器提供,
ONS是权威的(连接元数据和服务),在这个意义上,实体可以拥有―集中―改变对有关EPC信息的控制。从而,该架构还可以作为无处不在的计算的骨干,使智能环境识别和确定对象,并接收来自互联网的资料,以方便他们的自适应功能。
ONS是基于知名的域名系统(DNS)。从技术上讲,为了使用DNS来找到有关物品的信息,该物品的EPC必须转换成DNS可以理解的格式,这是典型的“点”分隔的,由左往右形式的域名。EPC编码语法上是正确的域名,然后在使用现有的DNS基础设施,ONS可以考虑是DNS子集。然而,由于这个原因,ONS也将继承所有的DNS弱点。
2 安全和隐私需求
21 物联网技术的要求
物联网的技术架构对所涉及的利益相关者产生安全和隐私的影响。隐私权包括个人信息的隐蔽性以及能够控制此类信息的能力。隐私权可以看作一个基本的和不可剥夺的人权,或作为个人的权利。用户可能并不知道物体的标签的归属性,并有可能不是声音或视觉信号来引起使用物体的用户注意。因此不需要知道它们个体也可以被跟踪,留下它们的数据或可在其网络空间被追踪。
既然涉及到商业过程,高度的可靠性是必要的。在本文中,对所要求的安全和隐私进行了说明:(1)抗攻击的恢复能力:该系统应避免单点故障,并应自动调节到节点故障;(2)数据验证:作为一项原则,检索到的地址和对象的信息必须经过验证;(3)访问控制:信息供应商必须能够实现对所提供的数据访问控制;(4)客户隐私:只有信息供应商从观察一个特定的客户查询系统的使用可以进行推断,至少,对产品的推断应该是很难进行。
使用物联网技术的民营企业在一般的经营活动将这些要求纳入其风险管理意识中。
22 隐私增强技术(PET)
履行对客户隐私的要求是相当困难的。多项技术已经开发,以实现信息的隐私目标。这些隐私增强技术(PET)的可描述如下。(1)虚拟专用网络(***)是由商业伙伴的紧密团体建立的外联网。作为唯一的合作伙伴,他们承诺要保密。但是,这个方案不会允许一个动态的全球信息交换,考虑到外联网以外的第三方是不切实际的。(2)传输层安全(TLS),基于一个全球信托机构,还可以提高物联网的保密性和完整性。然而,每个ONS委派都需要一个新的TLS连接,信息搜索由于许多额外的层将产生负面影响。(3)DNS安全扩展(DNSSEC)的公共密钥加密技术记录资源记录,以保证提供的信息来源的真实性和完整性。然而,如果整个互联网界采用它。DNSSEC只能保证全球ONS信息的真实性。(4)洋葱路由对许多不同来源来编码和混合互联网上的数据,即数据可以打包到多个加密层,使用传输路径上的洋葱路由器的公共密钥加密。这个过程会妨碍一个特定的源与特定的互联网协议包匹配。然而,洋葱路由增加了等待时间,从而导致性能问题。(5)一旦提供了EPCIS私人信息检索系统(PIR)将隐瞒客户感兴趣的信息,然而,可扩展性和密钥管理,以及性能问题,会出现在诸如ONS的一个全球性的接入系统中,这使得这种方法变得不切实际的。(6)另一种方法来增加安全性和保密性是同行对等(P2P)系统,它表现出良好的的可扩展性和应用程序的性能。这些P2P系统是基于分布式哈希表(DHT)的。然而,访问控制,必须落实在实际的EPCIS本身,而不是在DHT中存储的数据,因为这两项设计没有提供加密。在这种情况下,使用普通的互联网和Web服务安全框架,EPCIS连接和客户身份验证的加密可以容易地实现,特别是,客户身份验证可以通过发布共享机密或使用公共密钥来实现。
重要的是,附加到一个对象RFID标签可以在稍后阶段被禁用,以便为客户来决定他们是否要使用标签。 RFID标签可及将其放入保护箔网格而禁用,网格称为“法拉第笼”,由于某些频率的无线电信号不能穿过,或将其“杀”死,如移除和销毁。然而,这两个选择有一定的缺点。虽然将标签放在笼子,相对比较安全的,如果客户需要,它需要每一个产品的每个标签都在笼中。某些标签将被忽略并留在客户那里,她/他仍然可以追溯到。发送一个“杀”命令给标签,留下重新激活的可能性或一些识别的信息在标签上。此外,企业可能倾向于为客户提供奖励机制不破坏标签或暗中给他们标签,不用杀死标签,解散标签和可识别对象之间的连接可以实现。ONS上面的信息可被删除,以保护对象的所有者的隐私。虽然标签仍然可以被读取,但是,关于各人的进一步信息,是不可检索。
此外,由RFID撷取的非个人可识别信息需要透明化。有源RFID可以实时跟踪游客的运动,不用识别哪个游客是匿名的 ;然而,在没有任何限制的情况下收集这些资料是否被传统隐私权的法律涵盖,这一问题仍然存在。
人们对隐私的关心的确是合理的,事实上,在物联网中数据的采集、处理和提取的实现方式与人们现在所熟知的方式是完全不同的, 在物联网中收集个人数据的场合相当多,因此,人类无法亲自掌控私人信息的公开。此外,信息存储的成本在不断降低,因此信息一旦产生, 将很有可能被永久保存,这使得数据遗忘的现象不复存在。实际上物联网严重威胁了个人隐私,而且在传统的互联网中多数是使用互联网的用户会出现隐私问题, 但是在物联网中,即使没有使用任何物联网服务的人也会出现隐私问题。确保信息数据的安全和隐私是物联网必须解决的问题,如果信息的安全性和隐私得不到保证,人们将不会将这项新技术融入他们的环境和生活中。
物联网的兴起既给人们的生活带来了诸多便利, 也使得人们对它的依赖性越来越大。如果物联网被恶意地入侵和破坏,那么个人隐私和信息就会被窃取,更不必说国家的军事和财产安全。国家层面从一开始就要注意物联网的安全、可信、隐私等重大问题,如此才能保障物联网的可持续健康发展。安全问题需要从技术和法律上得到解决。

参考文献
[1] 吴功宜智慧的物联网[M]北京:机械工业出版社,2010.
[2] 宋文无线传感器网络技术与应用[M]北京:电子工业出版社,2007.
[3] ITU ITU In ternet Reports 2005: The Intern et of Th ings [R] Tun is, 2005
[4] In tern at ion alTelecomm unicat ion Un ion U IT ITU In ternetR eports 2005: The Internet of Th ings[R]2005


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10585883.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存