2可供行为参考数据——有后续计划的状态数据。它依赖于能够改变系统实时状态的自动化技术,以及能够使人们改变行为习惯或者做长线投资的说服力。
3反馈数据——物联网创造了一个从消费者到生产者的反馈回路,在这里产品生产者可以通过适度水平的隐私、安全以及匿名性来检验产品的实际表现,并鼓励持续的产品改进和创新。
4定位数据——为商业和工业用户提供定位数据服务的领域,存在着更大的市场。
5个性化数据——不要用个人数据来拒绝个性化数据,挑战将围绕开发应用程序和产品规则而展开。
物联网时代,大量的数据从不同的设备传感器产生,单机数据库系统肯定无法存储这么大量的数据,在选择数据库方面,肯定要选择具有分布式能力存储的数据库。
在物联网时代,数据之间还有一个非常重要的特性,那就是数据之间的关联性。不同的数据从相互连接的互联网设备传感器中产生,由于不同的传感器相互连接,协同工作和采集数据,如何将大量具有相互关联的数据保存在数据库,这里我推荐使用图数据库来进行存储。
图数据库相对于其他数据库来说,最大的优势就是查询数据之间的关联性会更加快速,消耗的时间会更短。打个比方,在社交网络中,我们想要查询在用户A的粉丝中,粉丝关注了B的用户。如果使用传统关系型数据库来存储用户的关注关系,在上面的数据统计中,要使用两层Join才能算出结果,而关系型数据库Join *** 作会很慢。使用图型数据库存储数据的话,图中的点为用户,边为用户的关注关系,在查询A的粉丝,同时粉丝也关注B的用户,只需要遍历两层关注关系就能很快查询到结果。
图数据库也属于NoSql数据库的一种,常用的图形数据库有,JanusGraph、Neo4j、Cayley、dgraph。不同的图数据库,底层实现也不尽相同。
JanusGraph是一种分布式图数据库,由Java语言开发,可以使用Hadoop生态存储系统作为数据源,构建出数据大图。是TiTan图数据库的开源版本,支持事务的ACID。
Neo4j是一种单机的图数据库,其优势就是能够快速安装并且使用,便于新同学上手。你的数据量一般不大的话,我推荐使用Neo4j,直接使用Neo4j相关的API就可以将数据模型图构建而出,然后使用Neo4jCypher查询语言,就可以分析数据,Cypher是一种类SQL的语言。
Cayley和Dgraph都是使用Go语言实现的图数据库,Go语言的最大特性就是其编译速度和开发便捷性,Cayley和Dgraph都支持分布式存储,不过都不支持SQL语言查询数据,Dgraph不支持事务,而Cayley支持事务,不过在开源社区,Dgraph比Cayley更加活跃,这里优先建议使用Dgraph作为物联网的存储数据库。
总体来说,在物联网时代,一定要学会使用图数据库,在分析大量数据之间的关联性时,图数据库就能够派上用场,图数据库最大的优势就是分析不同数据之间的关联性。
目前物联网的存储方式大概有一下几种方式:1 本地存储,通过在设备内部附加闪存等方式把数据存储在本地,或者本地网络的服务器上,实现数据的存储于随时调用。
2 私有云存储,企业或者组织通过假设私有云的方式,把物联网节点中的所有数据汇总到私有云上,用于随时查询与调用。
3 公有云,把汇聚节点的所有数据上传至公有云上,一方面便于管理,随时存取,另外一方面配合城市云平台,实现大数据的分析与预测。1、数据新鲜性是对所接收的历史数据或超出时限的数据进行识别的特性。
2、因为物联网感知层数据要保证接收到数据的时效性,确保接收到的信息是非恶意节点重放的。
3、在物联网环境中,一般情况下,数据将经历感知、传输、处理这一生命周期所以需要新鲜性保护。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)