各位,有没有用过智云物联网的NB-IOT卡,咋样?

各位,有没有用过智云物联网的NB-IOT卡,咋样?,第1张

2017年应该算是物联网的元年,也是真正发展的第一年。早在2015年的时候,一些咨询公司对物联网卡这个行业未来做了一个预估,表示到2020年全球的设备连接数能够到500亿,中国将占据20%的份额,市场规模将达到1万亿元。然而在2017年,仅仅是国内的物联网市场规模就已经超了1万亿元,所以说物联网发展壮大的速度是远远超过我们的预期。
在物联网行业,有一个名词我们经常可以听到,那就是NB-IoT。那到底什么是NB-IoT?NB-IoT俗称叫窄带物联网,其中的NB就是Narrow Band,窄带的意思。行业里有人说只有NB-IoT开始真正商用的时候,物联网才算真正开始发展。
这句话其实是有一定的道理,这需要从当前物联网行业的痛点和NB-IoT可以实现的功能来进行阐述。先说痛点,除了核心的技术之外,在实际使用的过程中,物联网行业这个设备有两个痛点:第一,物联网当前是一个2G/4G网络为主,许多地方它没有什么信号,比如说智能水电气表、共享单车、智能井盖、智能报警设施等这样一些设备,只要是放在外面的,靠电池供电的这么一些东西,几乎都是2G的网络,实际使用的时候,比如水电气表,有的是在地下室里面,有的是在一些角落的地方,这些地方有可能2G都信号比较弱,导致无法正常的能够进行数据回传。第一个痛点是设备能耗比较高,这个很好理解,比如说老人防丢的设备、智能的水电气表,市政设施等等,这样的终端电池顶多用1~2年,这还是在使用频率非常低的情况之下,像有的地方要求电表必须一天搜集一次数据的,可能几个月它就没电了。
NB-IoT
再说说NB-IoT的功能优势。
第一覆盖广。所谓窄带物联网就是说贷款很低,NB-IoT的最高带宽只有180KB,因此它的覆盖能力更广,可以轻松地穿透地下墙壁或车库等角落。根据测试穿透到地下一米是可以的,所以说水泥地表那都不是事。
第二能耗低。根据某设计院的测试表明,窄带物联网的设备能耗是其他设备的1/6~1/10,这就意味着以前只能用1~2年的设备,在窄带物联网的使用环境之下,可以用6~10年。比如说水电气表现在是7年换一次,完全就可以实现中途不更换了。
第三、连接数更多,与现有的技术相比,窄带物联网可以实现提升50~100倍接入数的这么一个能力。也就是说以前能容纳1万台设备同时工作,NB-IoT这样一个网络,现在能够容纳100万台,这是一个超级大的飞跃,所以NB-IoT的到来对于物联网来说完全是革命性的。
最后,NB-IoT是需要使用NB专用物联网卡(也称物联卡/SIM卡)的。
口袋物联是一家全行业物联网卡及创新应用解决方案提供商,通过技术赋能蜂窝物联网设备的连接能力,助力物联网行业跨界融合、集成创新与规模化发展,我们的愿景是“物联生活,口袋随行”。

首先,挨个解释一下基本名词。

量子纠缠 两个或多个粒子纠缠在一起,各个粒子所拥有的特性已综合成为整体性质,无法单独描述各个粒子的性质,只能描述整体系统的性质。纠缠的粒子不受空间的限制。当我们尝试测量其中一个粒子的物理量——更不用说其它致使其物理量改变的 *** 作——时,会即刻破坏掉它们的纠缠态,使原本纠缠在一起的粒子变成独立的粒子。但是,这一特性不能用来传递信息!实际上,假如光子A,B相互纠缠,现在把光子A带上月球,然后测量。虽然此时,在地球上的B脱离了纠缠态,但是这一事实在信息传输方面毫无意义。因为你不去测量就无法知道B的状态,但是一旦你去测量,那么纠缠态就会被破坏,而要想利用“月球上有人测量了A,破坏了纠缠态”这一信息,就必须存在某种监控B状态的手段——这手段本身就是对B的测量,所以不等有人测量A,它们就已经不是纠缠态了。尽管如此,量子纠缠的特性可用于量子通信的加密、量子计算机中内存数据纠错等。

复杂性科学 是理论计算机科学和数学的一个分支。当我们把算法实现成可执行的程序时,输入参数的大小和数目,将影响到程序运行的时间。我们发现,有些问题,随着规模提升,运算时间是呈指数级增长;还有些问题,运算时间可由以参数规模为变量的多项式刻画。著名的问题类,如P类(多项式时间复杂度),NP类(需要多项式时间验证某个可能答案)……

停机问题 不存在解决停机问题的通用算法,相当于说,不存在某个程序P,可以仅仅通过阅读其它程序C的语句,就能判断出,程序C运行后,是否能够在有限时间内结束或进入死循环。之前提过,图灵机上的程序和数学证明,乃至公理体系存在某种对应关系,所以,对停机问题的否定回答,相当于说不存在通用的算法,可以预先判断任意命题的可证明性——这就和一阶命题演算的不完备性,乃至哥德尔不完备定理产生了关联。

了解了上面的预备知识,就来看看令学术圈激动不已的最新发现。几位学者刚刚用165页论文,证明了量子物理,数理逻辑中的可计算性理论和计算复杂性之间存在深刻的联系: MIP=RE

看……看不懂

量子交互式证明 是量子物理,数理逻辑和计算复杂性的交叉学科。也就是说,相关领域的研究人员,需要预先完成量子力学,数理逻辑和计算复杂性的课程,然后再学习如何将它们编织在一起。其中量子交互式证明中的“证明”,或许称之为“验证”,更加合适。

设想一下,现在某个人突然在网上自称是来自未来的时间穿越者。那么我们会有什么反应?或许有些人直接当他是骗子,不予理睬。但也有些人,出于揭穿他的目的,向他提出关于未来的问题;经过事后验证,就可以暴露其骗子的本质(或者证实,真的有时间旅行)。

但是,无论如何,如果他真的是未来旅行者,只要他回答了足够多的可被验证的问题——如地缘政治变革,未来几年里出现的重大事件、全球性的重大灾害等——我们终究可以以相当高的概率验证这一点。

这种通过问答对话的验证方式就是所谓的话疗交互式证明。可以与之对话的不一定是人,我们还能够借助特殊的语法与机器、机制、算法程序、理论体系、解决方案之类的对象“对话”。借此验证其可靠性。

我们发现,交互式证明系统远比我们以为的要强大,甚至可以仅通过几轮“问答”就能以极大几率判断出算法或程序的有效性。系统缩写为MIP。

那么 量子 又是怎么参合进来的呢?

再设想一下,威能无穷的外星人卡多突然降临地球,愿意和各国交流,实现互惠共赢——前提是我们能够赢得卡多的信任。我们人类一方面和神明版的外星人保持交流,同时又需要提防其它国家抢先和外星人达成协议,获得外星黑 科技 !

所以,我们建立一套量子通信机制,用量子纠缠把各国的信息编制成整体信息发给卡多。各国之间的信息是彼此保密的,因为涉及国家机密。卡多回答后,整体信息又经过反编译,分发给各国。整套机制,就是为了防止某个国家通过损人利己的方式骗取卡多的信任。

现在问题来了。

经过计算后发现,如果不用量子通信机制,每个国家挨个提问,则需要更多的问题,才能最终通过卡多的“测试”。借助量子机制,把各国信息的编制到一起,哪怕不知道彼此具体的通信内容,也可以提升单次提问的验证效率——用更少的问题,就可以给出准确性更高的判断。

随后,数学家证明,1对1的量子通信本身并未提升效率。所以,有意义的是量子纠缠。最开始说过,量子纠缠本身不能传递信息,现在,我们却意外地发现, 它变相提高了计算能力

所以,为了利用量子纠缠这一神奇特性,我们构建了量子交互式证明系统,缩写是MIP。而结果也确实令人满意。数学家证明了,我们可以用MIP来验证一个问题是否具备停机特性——就是属于前面提到的停机问题构成的类。图灵停机问题被递归可枚举集完全编码,后者缩写就是RE。

现在,就可以大概看懂公式MIP=RE了……吧。这种表达式就像是N=NP一样,只不过等号两边所涵盖的范围更广。这一结果又推翻了算子代数中的 Connes’ embedding conjecture,意义深远。如果猜想成立,则立刻就能知道,很多其它重要命题也成立。很多数学工具可以移植到其它领域。甚至在物理上,因为Connes’ embedding conjecture不再成立(如果论文最终通过审核),两个用以刻画量子纠缠的数学系统失去了等价性。

这个东西太可怕了,最初的信息来自这篇博客

物联网给我们医疗健康带来的改变主要体现在以下几个方面:
1优化看病就诊流程。利用物联网技术,智慧医疗让患者就诊便利化,患者只需要动动手指,挂号、缴费、查看报告等就能便捷完成,省去了排队等候、重复缴费的辛苦。同时,借助视频远程会诊、信息化转诊平台等手段,可以让农村地区也能享受到优质的医疗资源。
2实现智能化管理。物联网技术能够帮助医院实现对医疗设备的智能化管理工作,通过对医院医疗器械、车辆、基础设施等资源进行智能化改造,让医疗设备无线化,物资管理可视化,帮助医院实现智能化管理。
3快速收集有效数据。各种医疗设备通过物联网卡接入到智慧医疗系统中,可以有效的识别患者数据,并且将信息反馈到处理中心,及时对信息进行智能分析及处理,为医生快速提供患者精准数据,减少医生工作量。
4提升医疗服务水平。物联网技术在医疗领域有着巨大的潜力,既可以帮助医院提高工作效率,降低医疗成本和开支;还可以给患者提供更加便利的服务,让更多的患者可以快速就医,享受健康呵护。这些对于提高我国的医疗服务水平有着积极的促进作用。


随着科学技术的发展,人们已一只脚迈进了智能 社会 的门槛,大量智能电子产品随处可见。随着 社会 智能化的发展,芯片的地位越来越重要,已成为手机、电脑、智能 汽车 。航天、物联网等行业发展的基础。

众所周知,我国进入半导体行业较晚,技术积累薄弱,国内企业在发展的过程中,太过于注重品牌知名度的提升,将大部分精力投入到了轻资产行业的发展,忽视了重资产行业的重要性,再者就是西方国家为了限制我国 科技 的崛起,早在几十年前就签订了《瓦森堡协定》,禁止向我国出口高尖端技术。受多种因素的影响,国内企业发展所需的芯片大部分从西方国家进口。

芯片过于依赖进口,对我国 科技 的发展而言真的不是一件好事,华为的遭遇就是很好的证明!

2020年5月,美国为了绞杀华为,突然修改世界半导体行业规则,禁止全球使用美国技术超过10%的半导体企业与华为合作,直接引发了华为的芯片危机,业务发展受到了很大的影响,如手机业务,已从世界第一大手机厂商的宝座跌落,今年第一季度国内市场份额从44%暴跌至16%,海外市场份额从去年的189%跌落至4%。

美国之所以欲将华为置之死地而后快,并不全是因为华为在5G通信领域打破了高通等美企的垄断,成为通信领域新的领头羊,主要是因为华为强大的研发能力!

据公开资料显示,华为凭借着58990项专利,成为了世界上拥有专利最多的 科技 公司。除此之外,不但在通信、手机领域取得了不凡的成就,其在芯片、自动驾驶、 *** 作系统、存储、人工智能、云计算等领域都达到了世界顶级的水准。

华为凭借一己之力,与高通、苹果、谷歌等美国多家行业老牌巨头斗得不亦乐乎,让世界各国重新认识了中国 科技 的力量与魅力,如此强大的华为,怎么可能不引起一向自以为是的美国的恐慌?为了不影响自己主导全球的计划,美国怎么可能让其继续发展下去?

2019年5月,美国以莫须有的罪名将华为列入“实体清单”,禁止美企与之合作。美国集全国之力、集盟友之力对华为长达一年的打压,不但没有将其打倒,反而让他变得更加强大。这一情况的出现,让美国很是恐慌,不得不使出杀手锏,芯片封锁!

美国的芯片封锁,让华为迎来了有史以来最大的生存危机,也让我们意识到, 在当今这个时代,要想摆脱被人鱼肉的命运,就必须实现技术独立,实现芯片的国产化,彻底打破封锁!

当前主流的芯片是硅基芯片,是从一堆堆沙子中提取中纯度高达99999%的硅晶圆,然后再经过设计、光刻、蚀刻、封装、测试等一系列复杂的流程,最终才能被应用在电子产品上。

在芯片制造全部工序中,光刻是我国芯片制造的短板,究其原因就是EUV光刻机被卡了脖子,而国产的光刻机仅达到了28nm级别。

或许有的人会说,几十年前,我国原子d都能造出来,现在造一个EUV光刻机有什么难的?事实上,我们短时间内还真的造不出来EUV光刻机,尽管中科院、清华大学等科研机构突破了很多EUV技术。

EUV光刻机不仅需要大量非常高尖端技术,还需要大量的元器件。 据ASML公司EUV光刻机总工程师透露,制造EUV光刻机所需的元器件超过10万件,来自世界上36个国家的1500多家企业,每一件都代表着业内的最高水平。值得一提的是,在ASML公司制造的EUV光刻机中,没有一件核心元器件来自我国企业。 由此可见,要想独自制造出EUV光刻机,我们将要克服多少困难。简单点说,我们要想独自制造出EUV光刻机,就必须将我们的基础工业水平达到西方国家基础工业水平的总和。

所以,我们要想短时间内打破芯片封锁,解决芯片被卡脖子的问题,我们必须另辟蹊径。所幸的是,中科院院士已经找到了这个“捷径”!

前不久,中科院院士、中科大教授郭光灿领导的科研团队在光量子芯片方面取得重大突破,成功掌握量子干涉核心问题的技术,这一重大技术突破,直接奠定了光量子芯片研制的技术基础。 中国院士团队的这一重大技术突破,让世界上唯一的超级 科技 强国美国震惊不已: 没想到中国科研人员会在这么短的时间内掌握光量子芯片技术。

要知道,我国是属于芯片行业起步较晚的国家,技术和人才储备都很薄弱,我们要想实现在光量子芯片领域的领先,付出的汗水将是发达国家科研人员的几百倍!

对于中科院院士团队在光量子芯片领域实现的重大技术突破,不少业内人士纷纷发表自己的看法: 一旦光量子芯片实现大规模量产,芯片的成本要比现在的芯片要低,而且中国也将会掌握芯片领域的主导权,华为的“芯”病也将会得到彻底根治!

不少网友心中看到这心中会有个疑惑,我快把光量子芯片吹上天了,那么,它到底是个啥东西呢?又具有什么特殊的能力呢?

所谓的光量子芯片, 就是用光子代替传统芯片的电子,通过光源能量和形状控制手段,将光投射线路经过光学补差,将设计好的线路图映射到晶片上。

芯片整体性能是否先进,与晶片上集成的晶体管数量有关,要想芯片性能更先进,就必须在固定大小的晶片上尽可能的集成更多的晶体管。

光量子芯片与传统硅芯片相比,其采用微纳米加工工艺、以光为载体,其数据传输能力更强、更稳定,而且信息储存的时间也会更久等等。

随着5G时代的到来,我们即将从互联网时代迈入物联网时代,我们对数据处理的速度的要求也会更高,传统芯片很可能无法满足我们这方面的需求,所以,更为先进的光量子芯片成为了我们在物联网时代的不二选择。

对于光量子芯片的发明,不少业内人士认为,其重要性不亚于计算机的发明,谁率先掌握了这种技术,谁就可以领跑一个新的时代!

笔者坚信,随着我国科研人员的不断付出,我们必将能在短时间内攻克光量子芯片所有技术难关,实现大规模量产,打破美国的芯片封锁,成为新时代的领跑者!

碳基芯片来了,弯道超车!


光子芯片来了,弯道超车!


似乎苹果三星已经被按在地上摩擦,沦为了过去式的老爷车。


近日,有人提到,关于中国科研人员研发的光子芯片,如果能成功,那么将可以应用于华为。而相关人士透露,这主要是因为首个轨道角动量的波导光子芯片被其研发出来,进一步实现光子OAM(轨道角动量)能在波导中近乎无损的有效传输,且就此申请专利。


手机的芯片


一般情况下,芯片工艺的制作是从设计研发,到生产,再到封测三大阶段。后两者还需要用到我们常说的光刻机,这也是制作环节的硬核。它的工作原理类似相片曝光,利用具光线的曝光将掩膜版中的图形纹理给印在硅片上。


所以我们先了解下常见芯片,手机芯片(chip)都是硅材质,且大多采用单晶硅。晶圆(Wafer)就是半导体载体的硅晶片,在该晶圆体中每个小点的单体晶片则是裸片(Die)。


设计芯片时,需要使用EDA方式


即通过CAD软件采用EDA方式实现集成芯片的设计,而设计如果无法做好,则不能达到集成效果,只能算是强硬的拼接。


而手机厂在设计中,要将这一系列的芯片组合在一起,怎么说呢?由于为了不占据空间,采用的ARM(英国一家设计公司)精简指令设计模板,如果单一的芯片,性能非常差。因此要将每个芯片集成起来,但此项技术是大部分企业没有突破的,仅有苹果,ARM,高通,三星等为数不多的企业能做到。


这就是为什么苹果的集成芯片性能好出那么多,以及英特尔比AMD同nm级下,依然比ADM性能强大许多(AMD也是集成,但是没有英特尔做得更好)。其他的企业,一般都是把芯片黏贴在一起组装的,并非做到了集成。


集成芯片是由哪些芯片构成的呢?


一、CPU(即中央处理器),它会在手机或者电脑中进行计算,相当于核心大脑。


二、GPU(即图形处理器),用于显示图形工作处理,目前手机中大多为3D的GPU,间接的给CPU减负,也是除CPU外最核心的一块芯片了。


三、NPU(即神经网络芯片),主要负责视频,图像等多媒体数据处理。


四、MCU(即单片微型计算机,扩容芯片),将CPU的频率跟规格缩减,另一个作用是把运行内存等元件统一的整合在单一芯片中。


五、ASIC(即定制集成电路),将所有元器件集成在电路中,相当于我们常说的电路板,可根据客户设计单独定制。


六、DSP(即数字信号芯片),利用硬件乘法器,来达到对各种数字信号处理的计算工作。


七、FPGA(即半定制电路),是设计可调控,生产即固定的可编程器,弥补定制电路不足与编程器电路数缺陷。


八、SOC(即可定制芯片),属于系统级别,常见的有可用于视频电话等方面(但在国外,其功能远远不止于此),也可以包含CPU、GPU等等。因为具备复杂指令的IP核,加上定制化,导致功能非常多。这个产品的技术含量极高,很少有企业能做出来,目前我国的企业都倒在了这里。SOC芯片是未来手机最主要的发展方向,因为其运行能力远强于其他芯片。


九、BIOS(输入输出芯片),在启动后,对硬件检测与初始化功能。属于只读存储器,不供电情况下也可以保留数据。


十、CMOS(临时存储器),保留BIOS中的设置信息及系统时间,日期等,临时存储器,断电后数据丢失。


十一、DRAM(即动态随机存取存储器),短时间保留数据,需要定时刷新。


十二、NAND(即闪存),它的存储数据不易丢失,断电后依旧可以保留数据,提升了存储容量,一般保障重要数据。


十三、SRAM(即静态随机存取存储器),与DRAM相反,不刷新可保留数据,不过断电后依然数据丢失。


十四、ROM(只读存储器),断不断电都可以保留数据,虽然不是硬盘,但功能类似于电脑硬盘。


十五、IC(电源开关芯片),顾名思义按键开关后,该芯片带动电源。


十六、LED(发光芯片),手机信号灯一闪一闪的,有时候绿色有时候橙色,就是这个芯片在捣鬼,当然除此之外,还负责照明技术。


十七、CIS(传感器芯片),需要配合CIS传感器,两者联通点对点收发,如摄像头至CIS芯片的图像处理等。


十八、永久芯片(别名打印机芯片),因为属于垄断型芯片,所以很多人不知道,但类似于北斗,大多军用。寿命长,无差别工作。


十九、M芯片(视频监控芯片),在国内属于被垄断领域,由三大企业掌控,据说国外的该芯片性能更好一些,但一直无法进入市场。


二十、航天芯片,被垄断行业,倒是有一家民企,未来或许会国企改革。


二十一、北斗芯片,具备基带芯片,RF射频芯片及微处理器的芯片组,国内垄断企业。


二十二、载波芯片,电力网络收发器,具体参数不详,垄断行业。


当然芯片的种类有很多,还有物联网,AI(人工智能,甚至是互交功能),RFID(视频识别),雷达,网卡等芯片。手机的设计商们,需要把以上核心的芯片集成在一起,才能最大化性能。


光子芯片是什么原理?


单光子芯片由英特尔和美国加州大学共同研制,把原本具备发光属性的磷化铟,跟硅的光路融合至单个混合芯片里。于是在增加电压后,磷化铟的光,便会冲进硅体晶片中的波导,从而产生持续的激光束,最终由这种激光束来驱动手机芯片上的器件。


同样的原理在光纤中早已上演,不过其导体为玻璃或塑料。


我们的轨道角动量波导光子芯片,是将以上光在通过波导内以后,能够高效高保真地传输低阶OAM模式,传输效率约为60%。此外,三比特中那“高维量子比特(qutrit)”态,也比硅导体的双比特“量子比特(qubit)”态要好,该波导确实有可能对高维量子态拥有 *** 控和传输的能力。


光子芯片VS硅芯片


事实上,电流传播速度大约等光速,为3 10^8m/s。光子芯片速度比硅芯片提高50倍,功耗却只有其1%,确实能够极大压缩成本。


那么光子芯片是否可以实现


但是,根据目前的研究表明,仍然无法让OAM存在于芯片内部。这一方面是由于生产设备问题,另外一方面,则是 传输中,无法掌握具体数据。以及由于扭曲光本身是自旋波导,加上螺旋形波阵的反冲,导致最后没有找到合适的位置。


不过磷化铟会致癌,属于2A类呼吸级致癌物,当然主要原因还是技术层面的问题。曾经英特尔就表示,此项技术依然需要很久,至少不是目前(十年内)可以做到的,当然等可以研发出的那天,标志着硅光子芯片成本的压缩。


超车的方向很重要


常常有人说就算我们研发了5nm芯片或者光刻机,但是西方 科技 肯定更领先,绝对不能在一棵树上吊死,要弯道超车云云。


其实这是需要有一定的知识储备或者说基础才行,如果在条件未充足的情况下,那么就像一辆三轮车想以60码速度超过 汽车 ,在弯道上就会翻车,没什么可以继续老话长谈的。甚至在芯片领域,我们什么都没有,研发,生产,设备等等,这就更应该扎实基础。


哪怕要弯道超车,也选择我们较有优势的领域,超到全球一流或者顶级,这个可能性总比芯片来的高。不知道楼下的读者们,是怎么认为的呢?


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10621562.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存