工业大数据不同于大数据,具有自己独特的特征。本文着重从工业大数据的定义与范畴、来源、特征、技术及应用领域、面临的问题等,全面剖析工业大数据的方方面面,让你一文读懂工业大数据的脉络!
工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、到订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命各个环节所产生的各类数据及相关技术和应用的总称,其以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业大数据相关技术和应用。
——工业大数据来源——
我们所谈的工业大数据,不完全等同于企业信息化软件中流淌的数据,从业界的共识看,主要来源有三类,第一类是企业经营相关的业务数据,这类数据来自企业信息化范畴,包括企业资源计划(ERP)、产品生命周期管理(PLM)、供应链管理(SCM)、客户关系管理(CRM)和环境管理系统(EMS)等,此类数据是工业企业传统的数据资产。
第二类是机器设备互联数据,主要是指工业生产过程中,装备、物料及产品加工过程的工况状态、环境参数等运营情况数据,通过MES系统实时传递,目前在智能装备大量应用的情况下,此类数据量增长最快。
第三类是企业外部数据,这包括了工业企业产品售出之后的使用、运营情况的数据,同时还包括了大量客户、供应商、互联网等数据状态。
——工业大数据特征——
笔者曾就工业大数据特征及数据驱动工业价值创造等话题,专门采访过工业大数据领域知名专家——美国科学基金会(NSF)智能维护系统(IMS)中心主任李杰教授,他表示:工业大数据与互联网大数据最大的区别在于工业大数据有非常强的目的性,而互联网大数据更多的是一种关联的挖掘,是更加发散的一种分析。
除此之外,两者在数据的特征和面临的问题方面也有不同。有别于互联网大数据,工业大数据的分析技术核心要解决“3B”问题:
1)Below Surface —— 隐匿性,即需要洞悉背后的意义
工业环境中的大数据与互联网大数据相比,最重要的不同在于对数据特征的提取上面,工业大数据注重特征背后的物理意义以及特征之间关联性的机理逻辑,而互联网大数据则倾向于仅仅依赖统计学工具挖掘属性之间的相关性。
2)Broken —— 碎片化,即需要避免断续、注重时效性
相对于互联网大数据的量,工业大数据更注重数据的全,即面向应用要求具有尽可能全面的使用样本,以覆盖工业过程中的各类变化条件、保障从数据中能够提取以反映对象真实状态的信息全面性。因此,工业大数据一方面需要在后端的分析方法上克服数据碎片化带来的困难,利用特征提取等手段将这些数据转化为有用的信息,另一方面,更是需要从数据获取的前端设计中以价值需求为导向制定数据标准,进而在数据与信息流通的平台中构建统一的数据环境。
3)Bad Quality —— 低质性,即需要提高数据质量、满足低容错性
数据碎片化缺陷来源的另一方面也显示出对于数据质量的担忧,即数据的数量并无法保障数据的质量,这就可能导致数据的低可用率,因为低质量的数据可能直接影响到分析过程而导致结果无法利用,但互联网大数据则不同,其可以只针对数据本身做挖掘、关联而不考虑数据本身的意义,即挖掘到什么结果就是什么结果,最典型的就是经过超市购物习惯的数据挖掘后啤酒货架就可以摆放在尿不湿货架的对面,而不用考虑他们之间有什么机理性的逻辑关系;
换句话说,相比于互联网大数据通常并不要求有多么精准的结果推送,工业大数据对预测和分析结果的容错率远远比互联网大数据低的多。互联网大数据在进行预测和决策时,仅仅考虑的是两个属性之间的关联是否具有统计显著性,其中的噪声和个体之间的差异在样本量足够大时都可以被忽略,这样给出的预测结果的准确性就会大打折扣。比如当我觉得有70%的显著性应该给某个用户推荐A类,即使用户并非真正喜欢这类也不会造成太严重的后果。但是在工业环境中,如果仅仅通过统计的显著性给出分析结果,哪怕仅仅一次的失误都可能造成严重的后果。
——工业大数据技术:算法与模型——
有了工业数据的大量积累,但并不等于直接的商业收益,中间隔着一道非常关键的通道——工业大数据技术。近几年,很多大数据专家和行业专家也在争执:数据量重要还是大数据算法更重要,双方各执一词。比如Googole就认为数据量的多寡至关重要,甚至直言:更多的数据胜过更好的算法。这种观点与我们意识认知中的“信息越多,就越靠近真相”类似。
而如《The Signal and the Noise》(信号与噪声,作者NateSilver),这本书里面的一个观点是“更多的数据意味着更多的噪声。信号是真相,噪声却使我们离真相越来越远。”所以,人们需要构建有效的算法和模型,去识别和认知何为真相。
在这里暂不讨论到底是数据量重要还是算法模型更重要,但针对工业大数据的有效利用,肯定离不开工业大数据的分析技术。
——工业大数据应用领域(场景)——
一、研发设计:主要用于提高研发人员的研发创新能力,研发效率和质量,支持协同设计,具体体现在:(1)、基于模型和仿真的研发设计;(2)、基于产品生命周期的设计;(3)、融合消费者反馈的设计
二、在复杂生产过程优化的应用:(1)、工业物联网生产线;(2)、生产质量控制;(3)、生产计划与排程;
三、在产品需求预测中的应用
四、在工业供应链优化中的应用
——工业大数据应用发展存在的主要问题——
《工业大数据白皮书2017年版》指出,研究与应用工业大数据,产品大数据是核心,物联大数据是实现手段,集成贯通是基础(业务模式、商业和价值驱动、关键抽取和应用)。而在实践过程中,这三个方面都存在不同程度的难点。
《工业大数据白皮书2017年版》封面
1、产品大数据:产品大数据是工业大数据的根源与核心,但工业制造业领域涵盖十分广泛,行业种类繁多,产品种类数量庞大且仍在不断增长,如何规范产品大数据的定义与分类方法,建立规范的、属性明确的、可查询可追溯可定位的产品大数据,将是顺利应用工业大数据的前提。
2、物联接入设备:物联大数据是实现工业大数据畅通流动的必要手段,但在工业实际应用中,工业软件、高端物联设备不具备国产自主可控性,物联接入的高端设备的读写不开放,形成设备信息的孤岛,数据流通不畅,突破这种束缚是实现工业大数据的关键。
3、信息集成贯通:集成贯通的难点在于商业驱动、打通关键点和环节,掌控产品源和设备,持续优化。
大数据具有4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。(1)物联网中的数据量更大:物联网的最主要特征之一是节点的海量性,除了人和服务器之外,物品、设备、传感网等都是物联网的组成节点,其数量规模远大于互联网;同时,物联网节点的数据生成频率远高于互联网,如传感节点多数处于全时工作状态,数据流源源不断。
(2)物联网中的数据速率更高:一方面,物联网中数据海量性必然要求骨干网汇聚更多的数据,数据的传输速率要求更高;另一方面,由于物联网与真实物理世界直接关联,很多情况下需要实时访问、控制相应的节点和设备,因此需要高数据传输速率来支持相应的实时性。
(3)物联网中的数据更加多样化:物联网涉及的应用范围广泛,从智慧城市、智慧交通、智慧物流、商品溯源,到智能家居、智慧医疗、安防监控等,无一不是物联网应用范畴;在不同领域、不同行业,需要面对不同类型、不同格式的应用数据,因此物联网中数据多样性更为突出。
(4)物联网对数据真实性的要求更高:物联网是真实物理世界与虚拟信息世界的结合,其对数据的处理以及基于此进行的决策将直接影响物理世界,物联网中数据的真实性显得尤为重要。大数据和物联网是什么听院士给你讲课
大数据、物联网这些热词到底怎么理解?这些技术如何应用到实践?7月23日至28日,由人社部主办、江苏省人社厅承办、江苏省工程师学会协办的“2018年物联网和大数据技术在农业、环保及工业领域的应用”国家级高级研修班在南京举行。尹浩和徐宗本两大中科院院士现场讲课,为大家答疑解惑。
“什么是大数据?大家看这样一张图。”讲课现场,徐宗本让大家看了一幅图,画面中一开始是很多复杂混乱的碎片,当经过成倍数据的叠加,最后形成一张大象的图像。“当数据达到量变和质变的临界点时,大家可以解读数据背后的故事,这就是大数据。”徐宗本表示,现在大数据已经不仅仅局限于一个定义,有人讲大数据时代,有人说大数据技术,还有人谈大数据文化。“这都体现了大数据拥有大价值。”
徐宗本举例,大数据提供了社会科学的方法论。“比如,通过获取分析数据,可以对社会政策进行进行分析,对社会走向进行预测,这就给文科、管科提供了公共的方法论。”更别说,大数据形成了高新科技的新领域,成为社会进步的新引擎。徐宗本表示,这都是大数据数据积累、关联聚合、数据分析出来的价值。
嗅到大数据的商机,目前全国各地也都在建立数据中心。对此,徐宗本表示,数据中心虽然多了,但是产业链条并不完整。“很多中心只是收集和存储信息,但是缺乏分析、挖掘和应用能力。”他打了一个形象的比喻,这就好比“只买米不做饭”。“大数据的分析和应用才能变现和创作价值,这是我们下一步需要好好利用的。”
如果说大数据是数据收集和分析,物联网则是将物品和互联网连接起来,进行信息交换和通信。简单说,就是人、机、物的联接。尹浩院士表示,“十三五”时期是我国物联网加速进入“跨界融合、集成创新和规模化发展”的新阶段。“万物控制”是业界面临的下一个挑战。
目前物联网已经与交通、节能环保、农业、智慧健康医护、家居、工业等各个领域进行了嫁接。“比如说,智慧交通。物联网可以通过各种基础传感设施,进行出行、消费、人口分布、交际等情况分析,然后基于公共交通网络的城市车载感知网络系统,进行智能化交通管制。设定管理路段、自动调整交通信号灯、车辆诱导通行等。”
不过,尹浩表示,物联网发展面临的瓶颈和深层次问题也很多。物联网安全管控、国际竞争压力、应用需求本地化都是下一步要迎接的挑战。1物联网本质上是互联网云脑的中枢神经系统和其控制的感觉神经系统和运动神经系统
2云计算本质上是互联网云脑的中枢神经系统,它通过服务器,网络 *** 作系统,神经元网络(大社交网络),大数据和基于大数据的人工智能算法对互联网云脑的其他组成部分进行控制。
3大数据本质上是互联网云脑各神经系统在运转过程中传输和积累的有价值信息。因为在过去50年随着互联网的快速进化而急速膨胀,体量极其巨大。是互联网云脑产生智慧智能的基础。
4人工智能本质是互联网云脑产生产生智慧智能的动力源泉,人工智能不仅仅通过算法如深度学习,机器学习与大数据结合,也运用到互联网云脑的神经末梢,神经网络和智能终端中。使得互联网云脑各个神经系统同时提升能力。
5工业40和工业互联网本质是互联网云脑的运动神经系统,这将是互联网云脑未来非常庞大的组成部分,它也将包含6中介绍的各种前沿技术。
6智能驾驶,云机器人,无人机,3D打印本质上是互联网云脑运动神经系统中最活跃的部分,他们通过延展运动和机械 *** 作,帮助人类完成对世界更强有力的探索和改造。
7边缘计算本质是互联网云脑神经末梢的发育和成长,人工智能技术不但应用在中枢神经系统中的大数据,神经元网络中,也分布到神经系统的末梢。让互联网云脑的感觉神经系统,运动神经系统的末梢控制变得更为智能和健壮。
8移动互联网本质是互联网云脑神经纤维种类的丰富,让互联网用户更便捷,更不受地域限制的链接到互联网云脑中。
9。大社交网络(Big Sns)是互联网云脑神经元网络,也是互联网云脑最重要的部分。它由互联网传统社交网络Facebook,微信,微博发育而成,从链接人与人,发展到链接人与物,物与物,甚至包括链接人工智能软件系统
10云反射弧(Cloud reflex arcs)是互联网云脑最重要的神经活动现象,与人类神经系统相仿,也包含感受器、传入神经纤维、神经中枢、传出神经纤维和效应器。是互联网云脑智能智慧与现实世界互动的重要运行动作。它的种类有7种。将在以后的文章中专门介绍。
11智慧城市本质是互联网云脑与具体的地域结合的结果,是互联网云脑的缩小版应用,智慧城市的建设,从互联网云脑的架构看,需要关注城市居民,单位,机构,企业建设统一的神经元网络(大社交)的情况,也要关注城市的云反射弧的反应速度和健壮情况,譬如防火云反射弧,金融云反射弧,交通云反射弧,新零售云反射弧,能源云反射弧等。
行业主要企业:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)
本文核心数据:中国物联网市场规模、中国物联网区域竞争情况
行业概况
1、定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。
2、产业链剖析:共有四大层面
所谓产业链,是以生产相同或相近产品的企业集合所在产业为单位形成的价值链,是承担着不同的价值创造职能的相互联系的产业围绕核心产业,通过对信息流、物流、资金流的控制,在采购原材料、制成中间产品以及最终产品、通过销售网络把产品送到消费者手中的过程中形成的由供应商、制造商、分销商、零售商、最终用户构成的一个功能链结构模式。
从产业链条来看,物联网的产业链条由上而下可以分为感知层、传输层、平台层和应用层四个层级。
自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。
行业发展历程:处于市场验证期
物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等 信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换
和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网发 展历史悠久,可分为三个阶段:
行业政策背景:政策大力推进
“十三五”以来,国家重视物联网产业建设及物联网成果应用,出台多度政策意见来推动物联网产业发展。在“十三五”以来发布的行业政策中,以推动物联网成果应用为主,利用物联网技术加强信息交换、提高监督管理水平等。
根据最新发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,在“十四五”期间,明确新基建,还要让5G用户普及率提高到56%。并且5次提到关于物联网的规划发展,除了划定数字经济的7大重点产业外,其余4次提到的场合均体现出对物联网发展重点的表述。
十四五规划中划定了7大数字经济重点产业,包括云计算、大数据、物联网、工业互联网、区块链、人工智能、虚拟现实和增强现实,这7大产业也将承担起数字经济核心产业增加值占GDP超过10%目标的重任。
发展现状
1、中国物联网连接数快速增长
全球物联网仍保持高速增长。物联网领域仍具备巨大的发展空间,根据GSMA发布的《The mobile economy
2020(2020年移动经济)》报告显示,2019年全球物联网总连接数达到120亿,预计到2025年,全球物联网总连接数规模将达到246亿,年复合增长率高达13%。我国物联网连接数全球占比高达30%,2019年我国的物联网连接数363亿。而根据2021年9月世界物联网大会上的数据,2020年末,我国物联网的数量已经达到453亿个,预计2025年能够超过80亿个。
2、应用层与平台层价值最高
从产业链价值分布看,应用层和平台层贡献最大的附加值,分别占到35%左右,传输连接层虽然重要,但产值规模较小;底层的感知层元器件由于种类众多,产业价值也较大,占到20%左右。
3、传输层产业结构中传输层占比最高
根据赛迪发布的《2019-2021年中国物联网市场预测与展望数据》,物联网的传输层依旧位居最大份额;随着大规模地方性物联网政策的落实陆续完成,支撑层增长速度放缓;而随着各领域市场需求的释放,平台层、应用层市场增长速度将持续呈上升趋势。
4、中国物联网市场规模突破25万亿
目前,物联网已较为成熟地运用于安防监控、智能交通、智能电网、智能物流等。近几年来,在各地政府的大力推广扶持下,物联网产业逐步壮大。再加之近几年厂商对物联网这一概念的普及,民众对物联网的认知程度不断提高,使得我国物联网市场规模整体呈快速上升的趋势。2019年我国物联网市场规模约在176万亿元左右,2020年根据赛迪公布的数据,我国物联网市场规模约达到214万亿元左右;预计未来三年,中国物联网市场规模仍将保持18%以上的增长速度。中国物联网市场投资前景巨大,发展迅速,在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。
行业竞争格局
1、区域竞争:北京物联网相关项目最多
截至2021年5月底,工信部共公开2批《物联网关键技术与平台创新类、集成创新与融合应用类项目公示名单》,前瞻结合2批的项目名单分析,目前中国物联网关键技术与平台创新类、集成创新与融合应用类项目主要集中在北京、浙江、广东和山东,其项目数分别为39个、24个、22个、20个。
2、企业竞争:以龙头企业间的竞争为主
《2021年中国物联网企业发展指数报告》于2021年10月29日发布,报告从动态角度评估物联网产业链各公司发展状况,围绕企业影响力、资金支持、研发技术能力、发展成效等多维度能力进行分析,剖析中国物联网企业的成就和面临的挑战,并总结中国物联网企业的发展情况及市场参与者竞争实力,试图发掘物联网行业业务实力强、成长性好以及竞争壁垒高的优秀企业群体。根据《2021年中国物联网企业发展指数报告》,2021年我国物联网最具领导力企业名单如下:
物联网行业发展前景及趋势分析
1、产业物联网占比逐渐上升
根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。
2、市场规模不断增大
目前,物联网在全球呈现快速发展趋势,欧、美、日、韩等国均将物联网作为重要战略新兴产业推进,但在繁荣景象背后却仍存在着众多阻碍发展的因素。其中核心标准的缺失,尤其是作为顶层设计的物联网参考架构等基础标准目前仍处于空白,基于争夺物联网产业主导权,各国对国际标准方面的竞争亦日趋白热化。
新冠疫情对于物联网行业来说犹如达摩利斯之剑,一方面疫情导致全球技术供应链出现一定的停滞期,另一方面疫情助推中国物联网的渗透。2020年无人工厂、无人配送、无人零售、远程教学、远程医疗等“无接触经济”的爆发均离不开物联网技术的支撑。综合多方面的情况分析,前瞻认为未来5年中国物联网的发展将保持高速增长,到2026年市场规模超过6万亿元。
以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)