物联网的技术标准和结构

物联网的技术标准和结构,第1张

1 物联网的标准体系

2 急需的物联网总体标准
3 传感器标准
4 传感器标准
5 传感器标准进展情况
6 传感器标准体系框架

认知感知层

1.感知层的概念

物联网层次结构分为三层,分别为感知层、网络层、应用层。感知层位于最 底层,它是物联网的核心,其功能为“感知”,即通过传感网络获取环境信息。 感知层是物联网的核心,是信息采集的关键部分。

2.感知层的应用

感知层包括二维码标签及识读器、RFID 标签及读写器、摄像头、GPS 导航、 各种功能传感器、M2M 终端、传感器网关等,主要功能是识别物体、采集信息, 与人体结构中皮肤和五官的作用类似。

3.感知层的关键技术

(1) 传感器:传感器是物联网中获得信息的主要设备,它利用各种机制把被 测量转换为电信号,然后由相应信号处理装置进行处理,并产生响应动作。 (2)RFID:它的全称为 Radio Frequency Identification,即射频识别, 又称为电子标签。RFID 是一种非接触式的自动识别技术,可以通过无线电讯号 识别特定目标并读写相关数据。它主要用来为物联网中的各物品建立唯一的身份 标示。

(3)无线传感网络:它的英文名称为 Wireless Sensor Network,简称 WSN。 传感器网络是一种由传感器节点组成网络,其中每个传感器节点都具有传感器、 微处理器和通信单元。节点间通过通信网络组成传感器网络,共同协作来感知和 采集环境或物体的准确信息。它是目前发展迅速,应用最广的传感器网络。

认知网络层

1 网络层的概念

网络层位于物联网三层结构中的第二层,它功能是通过通信网络进行信息传 输。网络层作为纽带连接着感知层和应用层,它由各种私有网络、互联网、有线 和无线通信网等组成,相当于人的神经中枢系统,负责将感知层获取的信息,安 全可靠地传输到应用层,然后根据不同的应用需求进行信息处理。

2 网络层的组成

物联网网络层包含接入网和传输网,分别实现接入功能和传输功能。传输网 由公网与专网组成,典型传输网络包括电信网、广电网、互联网。接入网包括光 纤接入、无线接入、以太网接入、卫星接入等各类接入方式,实现底层的传感器 网络、RFID 网络最后一公里的接入。

3 网络层的主要技术

物联网用到的通信技术主要包括 3G/4G 通信、IPv6、WI-FI 和 WIMAX、蓝牙、 ZigBee 自组网技术等。正在向更快的传输速率,更宽的传输宽带、更高的频谱 利用率、更智能化的接入和网络管理发展。
认知应用层

1 应用层的概念

应用层位于物联网三层结构中的最顶层,它的功能是通过云计算等计算平台 进行信息处理。应用层与最低端的感知层一起,是物联网的显著特征和核心所在, 应用层可以对感知层采集数据进行计算、处理和知识挖掘,从而实现对物理世界 的实时控制、精确管理和科学决策。

2 应用层的技术

(1)物联网应用:它是用户直接使用的各种应用,通常用应用软件的形式 表现。如智能 *** 控、安防、电力抄表、远程医疗、智能农业等。

(2)物联网中间件:物联网中间件是一种独立的系统软件或服务程序,将 各种可以公用的能力进行统一封装,提供给物联网应用使用。

(3)云计算:它对物联网海量数据的存储和分析。根据服务类型不同将云 计算分为:基础架构即服务(IaaS)、平台即服务(PaaS)、服务和软件即服务(SaaS)。

3 应用层与其他两层的关系 感知层将采集到的数据通过网络层传递给应用层,应用层将接收到的数据进 行分析管理,再将这些数据根据各行各业的应用做出反应处理。例如,在智能电 网中的远程电力抄表应用:安置于用户家中的读表器上显示感知层中的传感器采 集到的数据,通过网络层将数据发送并汇总到发电厂的处理器上,该处理器及其 对应工作就属于应用层,它将完成对用户用电信息的分析,并自动采取相关措施。

物联网与各种网络的关系
物联网(InternetofThings)的概念最早在1998年由美国MIT大学的KevinAshton教授提出,把RFID技术与传感器技术应用于日常物品中形成物联网,着重的是物品的标记。2005年ITU以InternetofThings为题发布互联网报告,强调物品联网。近年随着移动互联网技术和云计算技术的发展,特别是节能环保和社会安全等需求,物联网再度受到关注,但聚焦在通过感知达到智能服务的目的。在2010年我国的政府工作报告所附的注释中对物联网有如下的说明:是指通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。它是在互联网基础上延伸和扩展的网络。
传感网使用传感器作为感知元件,应用上可以无需基础网络,通常也不强调智能分析与决策。物联网使用传感器、RFID、激光扫描器、红外标记、普通条码、二维码、全息光学条码、GPS等作为感知元件,需要通过基础网络实现物与物和人与物互联,强调对感知数据的汇聚和挖掘及分析决策。物联网的组成包括三部分,即泛在化的传感节点及网络、异构性的网络基础设施、普适性的数据分析与服务。物联网与传感网的区别不在于联网的物件数量而在于感知单元的多样性和感知结果的智能利用,可以说传感网是物联网的一个子集。
物联网的底层借助RFID和传感器等实现对物件的信息采集与控制,通过传感网将传感器等感知节点的信息汇集,并连到核心网络,基础网络是物联网的重要组成部分,用于承载物物互联或物与人互联的信息传递,物联网的上层实现信息的处理和决策支持。物联网可用的基础网络可以有很多种,通常互联网最适合作为物联网的基础网络。尽管下一代互联网将以支持物联网的应用作为主要目标之一,但物联网并不是互联网的下一代,物联网可以说是互联网上的一种业务或应用。物联网强调的是认知,是互联网向感知平台和数据挖掘两个方向的拓展。物联网与互联网上传统业务相比有不同的特点:在物联网以公众网络(例如互联网)作为基础网络平台的情况下,物联网相当于互联网上面向特定任务来组织的专网()。互联网是全球性的,但物联网往往是行业性的或区域性的,物联网的行业应用的多样性与承载平台的通用性之间需要有中间件来适配。
M2M(Machine-to-Machine)与物联网有关,M2M通信与物联网的核心理念一致,不同之处是物联网的概念和所采用的技术及应用场景更宽泛,M2M主要聚焦在无线通信网络应用上,是物联网应用的一种主要方式。与物联网有关的还有CPS(CyberPhysicalSystem),CPS是计算、通信与物理过程的综合,CPS与物联网有类似的能力,物联网通过数据挖掘可得到决策建议,但通常是要上报主管人员再决定是否要采取措施,而CPS强调循环反馈,要求系统能够在感知物理世界之后通过通信与计算再自动执行对物理世界的反馈控制措施。从物与物通信进一步扩展到物与人以及人与人通信,支持个人和/或设备无论何时、何地、何种方式以最少的技术限制接入到服务和通信的能力,这种网络发展的愿景被称为泛在网。
在物联网上所用的通信技术比较成熟,但仍需要考虑物联网节点多功率小且需要接力传送等特点进行适配。
物联网通常有很多传感器节点,在传感过程中,首先是需要识别被感知的对象和感知信息。在给定任务的情况下使用最少数量的节点并最省功耗是物联网设计的目标。节点的传输距离、节点的合理分层分簇、拓扑控制等一系列节点的几何布局,是物联网感知层面设计的主要问题。根据应用和服务对物联网节点分群分簇,每簇会有一个节点负责搜集数据并将集合的数据传到网关,簇头的选择需要考虑节点的存储、过滤和聚合能力,为了不致过早耗掉簇头的电能,每簇内各节点可能需要轮流担任簇头。由于物联网节点数量密集,覆盖范围宽,而且新的物品的加入将要求节点添加或删除等,在节点的配置上要从减少安装和维护成本考虑,要尽可能少用人工干预,其次是网络发现技术,要求节点能够发现在其所处环境内的相邻节点的存在和身份,以便协商分享的任务,在物联网中网络是动态变化的,新的物品的加入将改变网络的拓扑,而且物品的特征还会随自治程度而变,物联网应具有基于智能匹配来对网中的节点自动发现和指配、自动部署与激活、解除激活和性能监视,还可以在任何时间对所分配的作用进行调整和调度。
有些节点由于制造的不一致,缺陷需要在出厂前校正,由于环境影响、老化等原因使所感知的数据有偏差,还需要在数据收集时校正或去除,还需要考虑传感器与环境之间的耦合关系。在感知数据的报送方式上,分为主动式和反应式两种。物联网收集的数据如果原封不动地存储将占用海量存储资源,必须通过压缩去掉重复冗余的数据,并且需要开发图像信息检索方法和搜索引擎,以有效提高物联网设施的利用效率。收集的数据不限于被感知物件的信息,还包括与事件的发生可能有相关性的政府数据、市民产生的数据等,要在认证安全、隐私保护等方面对数据进行过滤与正确性的确认。为了全面准确提供智能决策,希望有多源甚至异构的数据,通过多数判决和推理分析,去逼近真实环境,最后利用专家系统和数学模型,参考历史数据,综合异构来源的多种信息,进行分析推理,给出决策。
物联网需要有网管,控制物联网节点的休眠和叫醒,检测和登记节点的移动、发现相邻节点,并且在一个特定区域内均衡和调度传感任务等。需要关注物联网能量获取与存储及节能问题,实现能量测量和电量不足的预报以及动态功率优化等能量管理。从安全与隐私来看,物联网是双刃剑,它能对生产安全、反恐维稳和家居安全起积极作用,但如果感知数据偏差太大和判决失误,将弄巧反拙,因此对物联网的可靠性和安全及隐私需要足够重视。
物联网是两化融合的切入点,也是民生服务的新亮点,其应用面很宽,将带动新的产业特别是现代服务业的发展,其社会效益高于经济效益。物联网看似门槛不高,但如何在给定任务的情况下最大化网络的生命周期和最小化组网及应用成本均是严峻的挑战。低成本、高可靠、长寿命的传感器和RFID是物联网推广应用的前提,数据挖掘与智能分析是体现物联网效益的关键,也是物联网的薄弱环节。当前对物联网的理论和技术的研究还落后于应用示范,未来需要在物联网技术方面加大创新开发力度。同时还要重视统筹规划、资源共享,务求实效。

“中国式”物联网
定义
最简洁明了的定义:物联网(Internet of Things)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化3个重要特征 。
其它的定义:物联网指的是将无处不在(Ubiquitous)的末端设备(Devices)和设施(Facilities),包括具备“内在智能”的传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等、和“外在使能”(Enabled)的,如贴上RFID的各种资产(Assets)、携带无线终端的个人与车辆等等“智能化物件或动物”或“智能尘埃”(Mote),通过各种无线和/或有线的长距离和/或短距离通讯网络实现互联互通(M2M)、应用大集成(Grand Integration)、以及基于云计算的SaaS营运等模式,在内网(Intranet)、专网(Extranet)、和/或互联网(Internet)环境下,采用适当的信息安全保障机制,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面(集中展示的Cockpit Dashboard)等管理和服务功能,实现对“万物”的“高效、节能、安全、环保”的“管、控、营”一体化。
“一句式”理解物联网
把所有物品通过信息传感设备与互联网连接起来,进行信息交换,即物物相息,以实现智能化识别和管理。
泛在聚合
全球范围内物联网的产业实践主要集中在三大方向。
何为数据“泛在聚合”意义上的物联网?
第一个实践方向被称作“智慧尘埃”,主张实现各类传感器设备的互联互通,形成智能化功能的网络。
第二个实践方向即是广为人知的基于RFID技术的物流网,该方向主张通过物品物件的标识,强化物流及物流信息的管理,同时通过信息整合,形成智能信息挖掘。
第三个实践方向被称作数据“泛在聚合”意义上的物联网,认为互联网造就了庞大的数据海洋,应通过对其中每个数据进行属性的精确标识,全面实现数据的资源化,这既是互联网深入发展的必然要求,也是物联网的使命所在。
比较而言,“智慧尘埃”意义上的物联网属于工业总线的泛化。这样的产业实践自从机电一体化和工业信息化以来,实际上在工业生产中从未停止过,只是那时不叫物联网而是叫工业总线。这种意义上的物联网将因传感技术、各类局域网通信技术的发展,依据其内在的科学技术规律,坚实而稳步地向前行进,并不会因为人为的一场运动而加快发展速度。
RFID意义上的物联网,所依据的EPCglobal标准在推出时,即被定义为未来物联网的核心标准,但是该标准及其惟一的方法手段RFID电子标签所固有的局限性,使它难以真正指向物联网所提倡的智慧星球。原因在于,物和物之间的联系所能告知人们的信息是非常有限的,而物的状态与状态之间的联系,才能使人们真正挖掘事物之间普遍存在的各种联系,从而获取新的认知,获取新的智慧。
“泛在聚合”即是要实现互联网所造就的无所不在的浩瀚数据海洋,实现彼此相识意义上的聚合。这些数据既代表物,也代表物的状态,甚至代表人工定义的各类概念。数据的“泛在聚合”,将能使人们极为方便的任意检索所需的各类数据,在各种数学分析模型的帮助下,不断挖掘这些数据所代表的事务之间普遍存在的复杂联系,从而实现人类对周边世界认知能力的革命性飞跃。

物联网就是物物相连的互联网。

这有两层意思:

其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;

其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。

物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。

物联网的应用:

1、智能交通。物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力。

2、智能家居。智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温。

3、公共安全。近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,网可以实时监测环境的不安全性,情况提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10670358.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存