边缘计算(Edge computing)的用例和物联网(IoT)

边缘计算(Edge computing)的用例和物联网(IoT),第1张

现今世界网络和数据普及,不单止智能手机能连接网络,就连手表,闹钟,家电等日常用品,也能即时在网络中提取资讯,并配合环据数据作出分析,将最好的体验反馈给 用家。而透过网络来连接人,流程,资讯和装置这个概念,亦是我们平常所说的物联网(物联网,又名物联网)。

承接上文介绍了雾计算的简单的应用和由来,下文将会介绍物联网的一个重要技术 - 边缘计算(Edge computing)。下文将会阐述边缘计算的由来,并介绍它与物联网的关系,而且会利用无人驾驶作为用例,介绍云计算的短处和边缘计算的应用。

先定义一下边缘计算(wikepedia,2019):

这里提到很多艰涩的专业名词,例如是“分散式运算”,“节点”等,其实只是描述:边缘技术是一种技术将大型应用程式的一部分转移到(即分散式运算)日常设备中处理(即边缘节点中)。

在云计算的典型结构中(如上图),通常可分为“云(云层) - 网(雾层) - 端(边缘)”三层。“端”这一层覆盖所有终端的应用程式,亦通常是被管理的角色。当云计算一计算出结果,就会到透过“网”层,将指令发送到“端”层的应用程式执行,而应用程式收到数据后,则会发送到“云”层作计算。

而边缘计算则可以想像为给予“端”层一定程度的“自治”。在边缘计算的架构中,终点被赋予简单的存储和计算能力(与雾计算不同,这里重点是“简单”的功能) ,令它能偶尔脱离云的管理,并根据环境数据作出回应。

增加终端系统简单的计算和存取能力看似一小步,但其实这个布局有着莫大的好处,当中包括:

  - 低延迟:数据由近场产生,能快速回应

  - 独立性:在没有网络连接下,系统亦能运作

  - 合规性:无需传送用户资料,保护个人数据

  - 简化数据:终端先处理部份数据,数据简化后才向云服务器传输

  - 安全性:数据传输减少,减少网络安全风险

无人驾驶是边缘计算其中一个经典用例,亦是一个很好例子说明云计算的短处和为什么需要边缘计算。

下图展示的是常用的云计算架构,当中包括1)一架智能汽车(客户端),并且正在使用无人驾驶功能,2)互联网(Internet),用作传输数据,以及3)云服务(云计算)服务器),用作提供无人驾驶服务。

假设汽车正在以60ms-1的速度行驶,并在起始位置感测到前方3m有阻碍物。由于汽车正在使用云计算的架构,汽车本身并没有分析的功能,汽车会将感测到的影像 传送到云服务器中作分析(步骤1)。

很不幸地,由于汽车现在在北区甚远,信息在005s后才能到云服务 无上停驶,但也要经过005s才能将指令发送到汽车上执行(步骤2)。

在这段发送信息到回收指令的过程中(~01s),汽车会继续以均速行驶(60ms-1),并到6m后(= 60ms-1×01s)才会收到指令停下来 。而且会撞到在3m前的路人,酿成车祸。

汽车在起始位置感测到前方3m有阻碍物,会立刻执行停车指令(步骤1)。然后再发送影像和决策内容到云服务器中作进阶分析(步骤2),以改善无人驾驶性能。 (注:这里看似与雾计算方式相似,但在过程中,应用程式没有作任何的数据分析,只根据感应器内容作出回应。若然是雾计算的话,感应器信息会发送到雾服务中,再作分析,然后通知终端设备作出回应。)

由此可见,云服务器距离数据产生的位置较远,因此会造成较大的延迟。而无人驾驶这些需要实时作出决策的活动,则很大机会需要使用边缘计算,使计算的服务靠近产生数据的源头,做到计算更接近实际行动。

随着科技的进步,数据传输速度的快速提升,不少日常物品,例如是家用电器,车辆等,都已经嵌入感测器,并透过网络接结与互联网交换资讯,形成了庞大的物件网络(即物联网)。

物件会在运行时会收集到大量的环境数据。有些人会问,为什么不把数据都在本地(local drive)处理,其他数据再传到云服务做储存。这可能是其中一个可以实行的方法,但如果所有数据都在本地处理,物件本身要设有很多的存储装置和处理服务器。这会大大增加电力消秏和物件重量,增加成本。

因此,最好的方法是结合云计算和边缘计算的优势做出最佳的配置。在一些决定物件重大安全性的事件(例如如上文无人驾驶例子的刹车)可将决定的主导权放到边缘上,其他没有急切性的事情,则放到云服务器低成本集中处理。透过云与边缘的良好分工,大大减少成本,亦能提高运算效率。

云和物联网:完美匹配
在典型的物联网部署中,许多物联网传感器(几十个、数百个或数千个)收集数据并将其发送到中心位置进行分析。在许多情况下,这个中心位置就是云。
借助云管理,移动运营商可以通过任何设备和网络连接从任何地方访问其传感器数据。例如,如果附着在浮标上的海洋传感器散布在墨西哥湾,运营商可以在平板电脑上提取数据以评估维护问题或运行数据分析。如果没有云,则跨大区域和不同设备来聚合物联网数据要复杂得多。
许多物联网提供商还提供物联网平台,即SaaS程序,可帮助物联网管理者从远处管理其连接的设备和数据。云提供商允许公司以最低的成本存储和处理大量数据,从而为大数据分析打开了大门。
物联网服务的云计算与边缘计算
虽然云对于大多数物联网部署来说是不可或缺的,但最近一些功能的就地处理又有所恢复。边缘计算将一些数据处理保留在物联网传感器和终端设备所在的网络边缘。这在一些物联网应用中至关重要,如无人驾驶汽车,在这些应用中,数据分析和决策的任何延迟都有可能导致撞车。

边缘计算有以下的六大特点:
第一,去中心化
边缘计算就是让网络、计算、存储、应用从“中心”向边缘分发,以就近提供智能边缘服务。
第二,非寡头化
边缘计算是互联网、移动互联网、物联网、工业互联网、电子、AI、IT、云计算、硬件设备、运营商等诸多领域的“十字入口”,一方面参与的各类厂商众多,另一方面“去中心化”在产品逻辑底层,就一定程度上通向了“非寡头化”。
第三,万物边缘化
边缘计算和早年的IT、互联网,如今的云计算、移动互联网,以及未来的人工智能一样,具备普遍性和普适性。
第四,安全化
在边缘计算出现之前,用户的大部分数据都要上传至数据中心,在这一上传的过程中,用户的数据尤其是隐私数据,比如个体标签数据、银行账户密码、电商平台消费数据、搜索记录、甚至智能摄像头等等,就存在着泄露的风险。而边缘计算因为很多情况下,不要再把数据上传到数据中心,而是在边缘近端就可以处理,因此也从源头有效解除了类似的风险。
第五,实时化
随着工业互联网、自动驾驶、智能家居、智能交通、智慧城市等各种场景的日益普及,这些场景下的应用对计算、网络传输、用户交互等的速度和效率要求也越来越高。以自动驾驶为例,在这些方面,几乎是要求秒级甚至是毫秒级的速度。爱陆通的具有边缘计算技术的工业网关可以更好地进行数据传输。
第六,绿色化
数据是在近端处理,因此在网络传输、中心运算、中心存储、回传等各个环节,都能节省大量的服务器、带宽、电量乃至物理空间等诸多成本,从而实现低成本化、绿色化。

物联网应用技术未来发展前景有:更安全的保护措施、更普遍使用智能消费品设备、更加重视人工智能、数据转换更加迅速。

1、更安全的保护措施。

在新技术出现之初,它的技术力量几乎都集中在创新上,导致监管水平低下,这就使业界的兴奋、激进和政策、监管的滞后常常形成鲜明的对比。

由于物联网设备和基础设施的价格下降,企业在物联网设备上的应用也越来越普遍,这种创新和应用一旦普及,各种新技术的风险也突显出来。

2、更普遍使用智能消费品设备。

IoT所覆盖的行业人群广泛,从智慧交通、智能物流、医疗、农业、能源等行业应用,到私人智能家居、个人、智能汽车等应用,无论是降低成本,还是提高中国居民的生活质量,都将是中国居民生活质量的巨大提升。

例如,在日常的家庭生活中,智能家居会让烹饪变得轻松,睡眠更舒适,家庭生活更舒适,智能监控将使家庭安全系统更加强大,智能办公桌椅、智能家居更能让我们的生活更轻松,更舒适的家居生活将得到越来越多的自由。

3、更加重视人工智能。

边缘计算将会成为物联网的一股重要力量,因为边缘计算可以实现更高效的 *** 作和更快速的响应,同时,与人工智能等融合的物联网技术也会越来越普遍。

将来,我们将看到人工智能在物联网技术上的巨大进步。由于物联网设备和技术的应用越来越多,企业采集的数据量呈指数级增长,传统的计算方法已经不能满足数据处理的需要。

此外,人工智能可以填补数据收集与分析之间的空白,实现更好的图像处理,视频分析,创造更多的应用场景和商业机会。

4、数据转换更加迅速。

伴随着5G的到来,将会有越来越多的移动设备接入物联网网络,更多的物联网数据将掌握在人们手中。物联网数据的转化对技术人员非常重要,而且未来还会为非技术人员提供更多来自物联网的衍生数据。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10677514.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存