如何促进物联网的发展

如何促进物联网的发展,第1张

(一)加快技术研发,突破产业瓶颈。以掌握原理实现突破性技术创新为目标,把握技术发展方向,围绕应用和产业急需,明确发展重点,加强低成本、低功耗、高精度、高可靠、智能化传感器的研发与产业化,着力突破物联网核心芯片、软件、仪器仪表等基础共性技术,加快传感器网络、智能终端、大数据处理、智能分析、服务集成等关键技术研发创新,推进物联网与新一代移动通信、云计算、下一代互联网、卫星通信等技术的融合发展。充分利用和整合现有创新资源,形成一批物联网技术研发实验室、工程中心、企业技术中心,促进应用单位与相关技术、产品和服务提供商的合作,加强协同攻关,突破产业发展瓶颈。
(二)推动应用示范,促进经济发展。对工业、农业、商贸流通、节能环保、安全生产等重要领域和交通、能源、水利等重要基础设施,围绕生产制造、商贸流通、物流配送和经营管理流程,推动物联网技术的集成应用,抓好一批效果突出、带动性强、关联度高的典型应用示范工程。积极利用物联网技术改造传统产业,推进精细化管理和科学决策,提升生产和运行效率,推进节能减排,保障安全生产,创新发展模式,促进产业升级。
(三)改善社会管理,提升公共服务。在公共安全、社会保障、医疗卫生、城市管理、民生服务等领域,围绕管理模式和服务模式创新,实施物联网典型应用示范工程,构建更加便捷高效和安全可靠的智能化社会管理和公共服务体系。发挥物联网技术优势,促进社会管理和公共服务信息化,扩展和延伸服务范围,提升管理和服务水平,提高人民生活质量。
(四)突出区域特色,科学有序发展。引导和督促地方根据自身条件合理确定物联网发展定位,结合科研能力、应用基础、产业园区等特点和优势,科学谋划,因地制宜,有序推进物联网发展,信息化和信息产业基础较好的地区要强化物联网技术研发、产业化及示范应用,信息化和信息产业基础较弱的地区侧重推广成熟的物联网应用。加快推进无锡国家传感网创新示范区建设。应用物联网等新一代信息技术建设智慧城市,要加强统筹、注重效果、突出特色。
(五)加强总体设计,完善标准体系。强化统筹协作,依托跨部门、跨行业的标准化协作机制,协调推进物联网标准体系建设。按照急用先立、共性先立原则,加快编码标识、接口、数据、信息安全等基础共性标准、关键技术标准和重点应用标准的研究制定。推动军民融合标准化工作,开展军民通用标准研制。鼓励和支持国内机构积极参与国际标准化工作,提升自主技术标准的国际话语权。
(六)壮大核心产业,提高支撑能力。加快物联网关键核心产业发展,提升感知识别制造产业发展水平,构建完善的物联网通信网络制造及服务产业链,发展物联网应用及软件等相关产业。大力培育具有国际竞争力的物联网骨干企业,积极发展创新型中小企业,建设特色产业基地和产业园区,不断完善产业公共服务体系,形成具有较强竞争力的物联网产业集群。强化产业培育与应用示范的结合,鼓励和支持设备制造、软件开发、服务集成等企业及科研单位参与应用示范工程建设。
(七)创新商业模式,培育新兴业态。积极探索物联网产业链上下游协作共赢的新型商业模式。大力支持企业发展有利于扩大市场需求的物联网专业服务和增值服务,推进应用服务的市场化,带动服务外包产业发展,培育新兴服务产业。鼓励和支持电信运营、信息服务、系统集成等企业参与物联网应用示范工程的运营和推广。
(八)加强防护管理,保障信息安全。提高物联网信息安全管理与数据保护水平,加强信息安全技术的研发,推进信息安全保障体系建设,建立健全监督、检查和安全评估机制,有效保障物联网信息采集、传输、处理、应用等各环节的安全可控。涉及国家公共安全和基础设施的重要物联网应用,其系统解决方案、核心设备以及运营服务必须立足于安全可控。
(九)强化资源整合,促进协同共享。充分利用现有公共通信和网络基础设施开展物联网应用。促进信息系统间的互联互通、资源共享和业务协同,避免形成新的信息孤岛。重视信息资源的智能分析和综合利用,避免重数据采集、轻数据处理和综合应用。加强对物联网建设项目的投资效益分析和风险评估,避免重复建设和不合理投资。

大数据时代水产业如何与互联网做加法

随着科学技术的进步,物联网和制造业服务化迎来了以智能制造为主导的第四次工业革命。2013年,德国汉诺威工业博览会正式提出了“工业40”的概念。这是德国政府《高技术战略2020》确定的十大未来项目之一,旨在支持工业领域新一代革命性技术的研发与创新。

农业作为工业生产原材料的提供行业和工业制成品的使用行业,也必将融入这场时代的变革,向农业智能化时代即农业40时代发展。作为农业40的重要内容之一,水产行业也将发生深刻的变革,智能化、网络化、精细化和便捷化的水产养殖时代即将到来。

农业10 到40的变迁

农业40是以物联网、大数据、移动互联、云计算技术为支撑和手段的一种现代农业形态,即智能农业(Intelligent Agriculture),也是继传统农业、机械化农业、信息化(自动化)农业之后,进步到更高阶段的产物。

纵观国内外现代农业发展历程,可以分为四个阶段:农业10是依靠个人体力劳动及畜力劳动的农业经营模式,人们主要依靠经验来判断农时,利用简单的工具和畜力来耕种,主要以小规模的一家一户为单元从事生产,生产规模较小,经营管理和生产技术较为落后,抗御自然灾害能力差,农业生态系统功效低,商品经济较薄弱。农业20,即机械化农业,是以机械化生产为主的生产经营模式,运用先进适用的农业机械代替人力、畜力生产工具,改善了“面朝黄土背朝天”的农业生产条件,将落后低效的传统生产方式转变为先进高效的大规模生产方式,大幅度提高劳动生产率和农业生产力水平。随着计算机、电子及通信等现代信息技术以及自动化装备在农业中的应用逐渐增多,农业将步入30模式。农业30,即信息化(自动化)农业,是以现代信息技术的应用和局部生产作业自动化、智能化为主要特征的农业。

信息技术发展到新阶段即可产生新的农业发展模式即农业40,即:智能化农业,这是融合物联网、云计算和大数据的高度智能化农业,其目的是要实现大范围大尺度的农业生产全局的最优,以最高效率地利用各种农业资源、最大程度地降低农业能耗和成本、最大限度地保护农业生态环境以及实现农业系统的整体最优为目标;以农业全链条、全产业、全过程、全区域智能的泛在化为特征,以全面感知、可靠传输和智能处理等物联网技术为支撑和手段;以自动化生产、最优化控制、智能化管理、系统化物流、电子化交易为主要生产方式的高产、高效、低耗、优质、生态、安全的现代农业发展模式与形态。

农业40在我国“小荷才露尖尖角”,尚处概念、理念、设计和试验示范阶段:北京市重点开展了农业物联网在农业用水管理、环境调控、设施农业等方面的应用示范,实现了农业用水精细管理和设施农业环境监测;黑龙江省侧重在大田作物生产中搭建无线传感器网络,借助互联网、移动通信网络等进行数据传输及数据集中处理和分析,支撑生产决策;江苏省开发了国内领先的基于物联网的一体化智能管理平台,侧重在水产养殖等方面进行探索;山东在设施温室和水产养殖的整体行业信息化推进进步明显;浙江省重点在设施花卉方面应用物联网技术,各项环境指标通过传感器无线传输到微电脑中,实现了花卉种植全过程自动监测、传输控制;安徽省小麦“四情”监测项目建设已经启动。此外,河南、重庆、辽宁和内蒙等地也开展了一些探索工作。

现阶段,我国农业40主要以物联网技术在各领域各环节的示范推广应用为主,还未实现大规模、高阶化的应用。随着农业电商、农产品物流、农业市场化服务的快速发展,大数据、云计算、移动互联等也得到了广泛的应用,并与物联网技术进行了有效地融合。

“农业40”在水产行业的应用现状

“农业40”的发展以物联网、大数据、云计算、移动互联等技术为关键,突破涉及农业物联网的核心技术和重大关键技术,迎合现代农业的发展需求是迈向“农业40”的必经之路。现阶段,“农业40”在水产行业的应用主要体现在以物联网为核心的关键技术应用上。

物联网等“农业40”技术在水产领域的深化应用需要有大批懂技术、会应用的实用性人才。然而,水产养殖历来被视为艰苦、薪酬低、社会评价不高的职业,陈旧的社会偏见对农业院校特别是本身学水产养殖的学生及其亲人的心理产生了巨大冲击,这些学生毕业后,在自身有畏惧心理及其在家人劝阻之下,大部分转向了饲料营销等非养殖一线岗位,还有相当大一部分转向了跟水产风马牛不相及的行业,更不用说其它专业毕业生会投身这个行业。因此,在实用性人才不足的情况下,通过物联网等“农业40”技术大力提升行业内技术装备,打“技术牌”,才能更好地缓解水产行业高素质劳动力紧缺的困境。挪威的大型养殖场在人力成本高昂的情况下,通过集成现代信息技术,构建养殖物联网平台,实现三文鱼饲料投喂、收获、洗网、加工的完全自动化,只要定期维护便可实现1~2 人管理全场所有事务,这种良性运作的养殖业模式值得我们借鉴。

长久以来,作为我国传统的养殖方式,以低洼盐碱地和荒滩荒水等资源改造进行养殖,技术成熟、 *** 作简便、投入适中,适合我国农村以农民承包经营的经济发展水平。但是其周期长、劳动强度大、生产效率低且养殖风险大、水体污染严重。因此,减轻劳动强度,提高生产效率,降低养殖风险,实现生态养殖是渔民多年来的梦想,也是新时期对渔业现代化的必然要求。通过物联网等“农业40”技术把人工智能系统和相关的仪器、仪表、装备相结合,通过计算机控制实现水体质量监控、增氧、投饵、捕捞等养殖作业和运输、加工、仓储、物流等自动化管理,减少了人力物力的投入,也减少了人为经验误差造成的损失。同时,通过水产养殖户走向联合,各种行业协会、水产组织孕育而生,形成集群效应和规模效应,这就转变了水产养殖的发展模式。

当前,我国水产养殖业发展正处于一个新的历史阶段,特别是深化水产养殖业结构调整,稳定增加农民收入,提高水产品市场竞争力,对推进水产养殖业信息化的要求比以往任何时候都显得更为紧迫。大力推进水产养殖信息化,以信息化带动我国水产养殖业现代化,对于促进农业和水产养殖业的发展,提高渔民生活质量具有重要意义。

水产行业“农业40”面临的问题

目前,以物联网为代表的“农业40”技术涵盖了水产养殖行业的多个方面,并在政策扶持、技术研发、示范应用等方面积累了一定的经验,对水产行业形成了良好的促进作用。但农业物联网技术应用总体仍处于初级阶段,还有许多问题亟待解决,主要体现在以下几个方面:

首先,关键设备与核心技术储备不足。相对于其他领域,由于动植物的生命特征、系统环境的开放性和复杂性,加之应用对象经济条件的限制,农业对物联网技术产品提出了更高的要求。从总体上看,水产养殖的装备化程度低,自动化的基础条件有待进一步夯实。同时,我国农业物联网关键技术、产品、设备技术储备不足,集成体系成熟度较低,大面积推广应用的难度较大。比如在水产养殖业方面,由于我国水体富营养化程度高,稳定、可靠、耐用溶解氧、pH 值、叶绿素、氨氮、亚硝酸盐的传感器技术仍不过关,需要小型化、精确化、灵敏化、运行稳定的传感器,这方面,我国与国外相比仍有较大差距。

其次,水产物联网应用标准体系尚不完善。农业应用对象复杂、获取信息广泛,传感器的标准是否统一、采集的信息是否可以标准化应用,都成为影响水产物联网应用成败的重要因素。目前国内还没建立完整的农业物联网技术标准体系,现有标准还很零散、缺失和不统一,标准制定与市场应用结合不够,导致物联网市场分割,制造和服务成本偏高,这已成为制约物联网技术在现代农业发展中推广应用的重要因素,具体到水产物联网更是如此。

再者,水产物联网应用商业模式亟待建立。包括水产物联网在内,我国整个水产物联网行业还处于发展初期,缺乏成熟的商业模式。目前水产物联网的市场需求仍然是以设备采购、网络接入为主,导致农业物联网的产出与预期的估计差别太大。从产业化发展角度来看,目前我国农业物联网技术应用总体处于试验示范阶段,规模小而分散,农业传感控制设备等物联网关键技术产品难于实现批量生产,导致产品价格高,用户难于接受。农业物联网技术产品投放市场前缺乏严格质量检测,当设备暴露在恶劣自然环境下,导致设备稳定性差,故障率高,维护成本高,后续技术服务落后,农业物联网应用系统不能持续正常运行,影响了用户的使用积极性,导致农业物联网产业发展缓慢。

最后,水产物联网技术专业人才缺乏。目前广大基层农户、农技人员对于水产物联网的概念还很模糊,对于水产物联网的技术、设备等知识的认识还不全面,还不具备应用推广物联网技术的能力。同时,在水产物联网的传感器开发、运算评价模型的研究等方面缺少跨专业的复合型人才。水产物联网是整合了水产、通信、机械、计算机软件等多行业的一个综合产业。因此,就需要从事水产物联网的相关技术人员对农学、通信、软件编程等方面都要有较强的专业知识,这样才能研发出符合农产品生产者实际需要,真正智能化、自动化的农业物联网。

水产行业如何融入“农业40”

“互联网+”缩短了信息化与农民之间的距离,但是还没有很好的消除与养殖户之间的技术障碍。只有让互联网自然融入到传统水产行业,让养殖户像打电话和看电视一样简易 *** 作就可以进行智能水产养殖,才是真正的“互联网+水产”,也才真正迈出了水产行业“农业40”的第一步。

互联网尤其是移动互联网环境对于加速信息化在农业领域的应用、推进“农业40”发展优势明显:一是软硬件支出费用相对较低;二是可以随身携带、随时应用;三是交互方式相对优化,便于 *** 作;四是易于附加个性化服务和实现精准推送,可加载更多智能化的应用。这些恰恰是长期以来困扰信息化在农业领域深度、广度应用的关键难题。如今劣势变优势,意味着未来农业领域,特别是水产领域的移动互联网应用前景十分光明:

“互联网+水产”有利于实现生产智能化。移动互联网与水产物联网装备结合后,能够发挥全面感知、可靠传输、先进处理和智能控制等技术优势,实现水产养殖的全程控制,降低污染,减少疫病,提高养殖品质,达到科学养殖和智能养殖的目的。

“互联网+水产”有利于实现经营网络化。移动互联网有利于加快水产电子商务的应用,实现水产品流通扁平化、交易公平化、信息透明化,建立最快速度、最短距离、最少环节、最低费用的水产品流通网络,解决买难卖难问题,大大提高水产经营的网络化水平。

“互联网+水产”有利于实现管理精细化。移动互联网的普及,能够加快大数据、云计算等先进技术的落地应用,通过对终端、用户及其水产生产经营行为的跟踪服务,进行生产调度、应急指挥、质量监管,对上辅助宏观决策,对下优化生产经营行为,解决当前管理对象不明确、效率不高等问题。

“互联网+水产”有利于实现服务便捷化。移动互联网的便携随身和实时交互特点,很好地解决了农业信息服务“最后一公里”问题,便捷服务的同时,为市场化、多元化信息服务提供了机遇,通过创新型应用等多种手段,未来的水产信息服务将更加丰富便捷。

真正的信息化应该是“润物细无声”的,无需冗长的教程和繁难的培训,一看就会,一用就见效,自然能够受到农民追捧、赢得市场,这应该是互联网融入水产行业的最佳情境设想。因此,“互联网+水产”的发展,不能把重点放在教育一线养殖户,而是从一线养殖户的实际和思维出发,因势利导、潜移默化地进行适应性改变,这就是所谓的“引导”。那么,这个适应性改变应该如何进行?

一是要加快易用、实用APP的开发,建议模拟不同的养殖场景,按照养殖全过程设置重要节点和参数,按照农民的养殖习惯优化应用流程。

二是要打通生产和经营的通道,通过移动互联网实现“扁平化”,借助在线传输方式,让消费者与养殖现场建立关联,无论是水产品质量追溯,还是养殖现场视频调阅,甚至是水产养殖众筹,都可以大胆尝试。

三是要充分利用政策资源,实施移动互联网示范工程,通过创建“互联网+”示范养殖场、养殖能手等行动,大力推广信息化养殖理念和技术,加强用户体验,大规模提升水产养殖信息化水平。

四是要积极实践互联网思维,启动水产信息化服务市场,借用打车软件等先进的运营思维,合理配置盈利点,前端推广多采用免费、补贴等手段,让农民享受到实惠,再从水产养殖的其他环节找回企业收益。

以上是小编为大家分享的关于大数据时代水产业如何与互联网做加法的相关内容,更多信息可以关注环球青藤分享更多干货

物联网在生活中的应用包括第二代身份z、ETC自动收费、智能物流等。

1、第二代身份z:

第二代身份z最大的改革就是它的防伪技术,第二代身份z有定向光变色“长城”图案、光变光存储“中国CHINA”字样、防伪膜、等防伪技术,二代身份z采用的是非接触式IC芯片卡和指纹感应,这是典型的物联网基础应用。

2、ETC自动收费系统:

ETC自动收费系统可以让来回的车辆在经过拦车杆时只需要减速行驶,就可以完成认证、计费,在很大程度上节省了人力和物力。但因为要升级收费系统,还需要在车辆上面安装识别芯片,所以很多地方是采用ETC与人工收费两种系统。

3、智能物流:

物联网技术同样运用到运输物流业,将转感器安装在货车和正在运输的各个独立部件上,从一开始中央系统就追踪这些货物直到结束,这样便可以全面实时的追踪这些车辆和货物行程,不仅可以实时更新货物信息,还可以防止货物被盗。

扩展资料:

物联网的运用范围:

物联网将现实世界数字化,应用范围十分广泛。物联网拉近分散的信息,统整物与物的数字信息,物联网的应用领域主要包括以下方面:运输和物流领域、工业制造、健康医疗领域范围、智能环境(家庭、办公、工厂)领域、个人和社会领域等,具有十分广阔的市场和应用前景。

在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可以查出它们的具体位置。通过物联网可以用中心计算机对机器、设备、人员进行集中管理、控制,也可以对家庭设备、汽车进行遥控,以及搜索位置、防止物品被盗等,类似自动化 *** 控系统。

同时透过收集这些小事的数据,最后可以聚集成大数据,包含重新设计道路以减少车祸、都市更新、灾害预测与犯罪防治、流行病控制等等社会的重大改变,实现物和物相联。

参考资料来源:百度百科-物联网

我国农业发展面临着资源与环境等约束,迫切需要加强农业物联网的应用——物联网如何和农业更好结合
农业物联网作为一项新型信息化集成技术,正改变着我国传统农业的面貌。当前,蓬勃发展的农业物联网存在哪些瓶颈,如何推动其更好发展,记者进行了深入采访。
智慧农业啥样
在北京夏黎城设施农业专业合作社,物联网智能控制系统不间断监测室外温度、湿度、风速、风向等气象指标,实时采集温室内环境和生物信息参数。工作人员介绍,这里的网络型灌溉管理系统能节水69%,智能施药系统可节省农药15%至20%,整个系统可使得菊花分化到现蕾的时间缩短5至7天,商品化率提高15个百分点。
北京夏黎城设施农业专业合作社是北京市设施农业物联网示范工程的一个核心基地。该示范工程初步建设了5000亩核心示范区、2万亩直接带动区和5万亩辐射带动区。据测算,通过物联网技术,核心区蔬菜产量平均提高约10%,基地每年增收1600万元以上。北京市农委信息中心主任刘军萍告诉记者,由于前期示范的良好效果,今年又有6个农业企业和一些农户主动提出安装传感器,通过农业物联网节本增效。
“农业物联网主要有感知、传输和控制三大作用。”中国农科院信息所所长许世卫解释,农业物联网不仅能感知水、肥、热、气、光等外部环境变量,还能感知生物本体,比如,对水稻叶片中的各种营养元素的感知。“如果感知到水稻叶片中叶绿素含量降低,说明缺氮了,就要添加氮肥。如果等到肉眼看到叶片发黄再追肥,就晚了。”
我国农业发展面临着资源与环境等约束,迫切需要加强农业物联网的应用,提高农业精细化管理水平。农业部市场与经济信息司司长张合成说,通过物联网技术改造传统农业,提升农业各环节智能化程度,目标是实现“环境可测、生产可控、质量可溯”。
2011年,农业部发布了《全国农业农村信息化发展“十二五”规划》,并与发改委、财政部组织实施了北京市设施农业、江苏无锡养殖业等三大国家级物联网应用示范工程,我国农业物联网发展驶入快车道。今年,农业部启动了天津、上海、安徽等三个农业物联网区域试点,并认定了40家农业农村信息化示范基地。在示范区外,各地农业物联网发展也方兴未艾。
制约瓶颈在哪
“当前最大的问题是,没有把物联网技术在农业上的应用量化在经济指标上。不计成本的示范对农业物联网的推广并没有实际价值,要解决谁为应用买单的问题。”2013年中国物联网大会上,物联网产业协会副理事长柏斯维认为,试点示范并不代表真正实现产业化,大规模商业化应用还需要时间。农业是弱势产业,生产条件可控性差,这决定了物联网在我国农业领域的应用明显不同于在工业等领域,导致了其发展初期受资金制约严重。
资金投入是发展农业物联网的首要问题。记者采访发现,农业物联网基础设施建设具有一次性投入大、回报周期长的特点。在农业整体比较效益低、以小农户分散经营为主的情况下,很多物联网设备因价格偏高很难大面积推广。据了解,一套物联网设备,因其核心传感器的不同,价格从一万元到几十万元不等。如果不是从事规模经营或者高效种养殖业,普通种植大田的农民是无力承担的。
“农业专用传感器的缺乏是我国农业物联网发展的瓶颈。目前我国农用传感器种类不到世界的10%,国产化率低、缺乏市场规模效应。在覆盖面、适用性等方面还有很大提升空间。”农业部信息中心主任李昌健说,我国传感器主要集中在对温度、湿度的监测,对其他环境因子关注较少,尤其对生物本体的感知还很少。国产传感器性能不够稳定,使得监测数据不够准确,经常需要校正,而且器材寿命短。
同时,物联网设备还不够接“地气”,在满足农民使用需求方面还要继续探索。目前,我国农业物联网设备主要产自高校院所的实验室,概念性产品多,实际产业化率不高,且实验室理论研究与农业实际应用差异较大。
“物联网设备要力求方便实用和‘傻瓜化’。”中国农业大学宜兴农业物联网研究中心负责人李道亮教授告诉记者,宜兴水产养殖物联网从实验室概念型产品到最终成熟的应用系统,一共研发了3代产品,对电路、通信、模型三大模块总计改进了上百次,大部分都是为适应当地环境特点和农民 *** 作简便进行的改进。
发展途径何在
“农业物联网项目要以‘测得出、传得快、算得灵、用得好’为建设标准,重点在功能设计、核心技术、推进机制等方面寻求突破。”张合成对记者说。
据介绍,农业部正在积极谋划,争取在财政部的支持下启动“益(e)农计划”,系统推进全国农业生产经营信息化与信息服务体系建设。同时,正在研究建立农业信息补贴制度,加快推动将农业物联网相关产品和装备纳入农机购置补贴目录,以此鼓励电信运营商、IT涉农企业、科研院校等社会力量的积极性,逐步形成政府引导下的投资主体多元化、运行维护市场化,合力推进农业物联网发展。
“农业物联网是个复杂的工程,总体处于试验阶段,既要重视它,又不能盲目夸大其作用,要与现有信息化工作结合。”国家农业信息化工程技术研究中心主任赵春江表示,物联网发展应用应突出重点,要优先从基础好、规模化程度高的行业入手。他认为,应在水土资源开发利用、生产过程精细管理、农产品与食品安全监控系统等领域优先发展。
面对国内传感器的发展现状,有关专家表示,要坚持自主研发与引进吸收并重。提升农业物联网的自主创新能力,难度大的技术要加快引进吸收,短平快的技术要自主研发,把传感器转换成低成本、便携式的仪器设备,通过单项技术突破与集成应用并举,加快技术研发应用步伐。

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10699167.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存