物联网时代的大数据策略

物联网时代的大数据策略,第1张

物联网时代的大数据策略

互联网时代,PC、Pad、智能手机等设备无处不在,数以亿计的用户通过微博、微信、SNS、博客等途径产生大量的自媒体数据,电商、新闻类网站、搜索引擎每时每刻都在记录着丰富的用户行为信息,海量的数据促进了云计算,分布式技术的发展,而这些技术反过来不仅推动了Web和移动互联网的革新,也推动了物联网的飞速前进。现在,我们正逐渐迈入物联网时代,实现万物互联的愿景,如果说之前人是信息生产的主体,那么或许不久的将来设备将成为主角,它们将源源不断地产生与人相关的衣食住行信息,这些信息会通过云计算、数据挖掘等技术实现价值的升华从而为用户提供更优质、贴心的服务。那么物联网时代会产生什么样的数据,应该采用什么样的大数据策略呢?
THINKstrategies 的总经理 Jeff Kaplan 在自己的博文《 当物联网遇见大数据 》中写道:
“你不能使用现在的策略,因为可以被捕获、管理并利用的数据将更加多样化,同时用例也会更加丰富。附加到各种设备和对象上的传感器会产生各种类型的数据。这些数据将会用于各种响应式的、主动的或者 创造性的目的 。IT部门的任务就是与业务部门一起工作,完全理解物联网方面的用例,然后寻找满足业务需求的技术。特别是,IT部门必须识别出最优的分析平台和工具,让业务用户能够获取到需要的数据,分析数据的含义并快速地做出响应。”
Gartner公司的副总裁、著名分析师 Joe Skorupa 认为:
“分布在世界各地的物联网设备将产生大量的输入数据,将所有的数据传送到一个位置进行处理无论从技术上还是从经济上都是无法实现的。最近的趋势——将应用程序集中起来以便于降低成本并增强安全性——并不适合物联网。组织必须将数据集中到多个分布式的小型数据中心中,在此对数据进行初步的处理并发送到一个中心站点进行额外的处理。数据中心管理员需要在这些区域部署更加具有前瞻性的容量以满足业务发展的需要。”
Patrick McFadin则在自己的博文《 物联网:数据都去了哪里? 》中阐述了一个具体的数据策略解决方案。他认为整个过程可以分为三个阶段:产生数据并通过Internet传递、中央系统收集并组织数据、持续的数据分析与使用。
第一阶段需要决定数据创建的标准以及如何通过网络进行传递。Patrick McFadin认为可以通过>

以上是小编为大家分享的关于物联网时代的大数据策略的相关内容,更多信息可以关注环球青藤分享更多干货

1硬件。主要是五花八门的物联网IoT设备,以及相关的通讯设备。打开一个物联网IoT设备,里面有各式各样的感测IC(压力、温度、气体成份、光线)、通讯IC(Wi-Fi、Bluetooth
BLE,ZigBee,Z-Wave)、微控IC(microcontroller)、机械零件、固件、外壳等。用比较宽松的估计,硬件售价大约10%左右,也就是300美元中的30美元。
硬件有许多可以着墨的地方,但因为物联网IoT多半要遵循国际标准,以确保硬件彼此的相互 *** 作性,除非拥有品牌优势,否则迟早会成为红海市场。如何持续增加附加价值,将会是从业者最大的挑战。
2系统组成、架设与维修。除了消费者个人使用的物联网IoT设备外,多数需要系统集成公司提出解决方案,例如哐哐-云MES系统,然后负责架设,然后提供未来的维修工作。在美国一般这类费用跟硬件相当,因此大约也占10%,是一个可观的市场。
3从设备端、中间端、到后台管理的各式软件。每一个物联网IoT设备(特别是可穿戴设备)都少不了应用程序,许多设备间要能够互通讯息,交换数据,也需要中间软件(middleware)。一家企业管理庞大的物联网IoT网络,自然也需要新一代的企业软件,跟现有的ERP软件挂钩,协助企业经营和决策。这是附加价值极高的产业,粗略估计应该占物联网IoT价值链的30%左右。
4数据分析、管理与监控。物联网IoT要能蔚为潮流,使用者必需真正得到好处,其中不只是增加效率,更重要的是能够翻转企业运营,颠覆商业模式。未来要能做到信息等于资源,销售与工厂零落差,就必须利用大数据、机器学习、人工智能等技术,随时随地能在海量的数据中萃取出有用的信息,实时处理。这个领域附加价值最高,也是物联网IoT最主要的成长动力,至少会占到50%的比重。

早期进入人们生活的因特网,是庞大、错综的聚合体。它由彼此相连的服务器以及与服务器相连的专用设备(主要为个人电脑)聚合而成。但如今,全世界正开始过渡到一种全新的联接拓扑,即我们所说的“物联网”。今天,计算能力仍然由大量专用设备接管,其中也包括个人电脑。它们依托于从前因特网时代沿用至今的大量既定的,并且通常是碎片化的软件接口。计算能力以及计算机智能被分配到或者嵌入于各类设备,就像是在一个专供特定任务的岛屿之上。 虽然,越来越多的计算能力被分配到不同的智能设备上(即物联网中所谓的“物”),但是在不久前,它们仍以完全“无声”的方式使用。现在的智能设备包括移动装置、嵌入式系统、工业控制和车内系统,甚至在某些情况下还包括家庭电器。RFID(无线射频识别)以及GPS(全球定位系统)标签也能说明,在物联网,这些早期的静态对象也能被“激活”,并能够在无人干预下储存及传送与之相关的数据。但是到2020年,预计仍将有40亿人口以及超过310亿部设备在使用所谓的“因特网”。于是,物联网的出现绝非只是用各类信息将数字世界变得更为错综繁杂。当几乎所有的设备或对象都开始需要处理能力以及自动执行任务的能力时,并不能只对系统本身进行扩展,而是要做出巨大的变化。不管物联网以何种形式呈现,有一点是确定的,即它不但将会在广泛意义上改变计算的本质,而且也将给用户的期望和眼界带来改观,从而服务的方式,包括安全性等也必须加以准备。计算能力的转移人们最初得出的重要结论是这样的,将计算能力从某些既定的企业(包括供应商和客户)中转移到那些能够通过M2M(机器与机器对话)方式,在无需人工干预的情况下,使对象得到处理和互动,并能为其建立标准的企业。物联网拥有的潜力能够使之成为一个戏剧性的均分者,有一部分原因是尖端技术并不再仅限于大型企业,而且物联网还将减少这些企业对拓展的寻求。从某种意义上说,大型企业将面临最大的挑战。从商业的角度而言,我们认为自20世纪60年代开始,日本电器商在艰难中崛起并最终主导电器时代能够最好地体现物联网的效用。日本电器商同时也缔造了“物”的概念。“物”之本身不再具有盈利,所以下一代的成功商家将是那些能嵌入及连入智能,并以此投入市场的企业。在未来的十年,世界将以何种形式改变,我们刚刚做了一个构想。那么企业又将如何准备呢?瞬息万变中,又会带来哪些特定的问题? 大数据及云技术第一类挑战将是数据分析师以及供应商都会提及的“大数据”方面的问题,也就是说超大规模的潜在数据将需要被处理、储存并转移至各类“物”中,抑或由其转移而出。这体现的是一类分析方面的问题,尤其是关于M2M设备所生成的大量数据间的重要的组合方式,或者是关于这些数据的储存地点。“大数据”是一堆无限庞大的数据,而且从本质上,它们无时不刻地都在增量,让现有的科技黔驴技穷。从前因特网时代延续而来的独立储存系统根本无法在物理或者逻辑层面上满足这类储存需求,这些储存系统很快被拖垮。因此,云储存应运而生。但事实上,这仅仅是将问题踢给一群服务提供商,尔后还会产生各种新的问题。这些服务提供商需要达到怎样的标准才能满足数据的物理以及逻辑储存,并且在今后得以迁移至他处?他们又是是否能够符合规章制度以及隐私标准——然而这些制度或标准对于不同的国家,贸易体甚至行业通常会大相径庭。而“云服务”同样也带来一系列的安全问题,例如连接安全性将的验证、登入方式,以及怎样防止可能发生的故障。如果上述关于大数据的基本问题无法得到解决,物联网看上去就仿佛是一个“焦虑的因特网”,只要小小的故障就能导致巨大的后果。只有以确切的方法保护M2M系统不受这一连锁反应的危害,才不会减缓物联网在下一个十年中的推广。 英特尔智能系统框架诸如英特尔之类的公司辩称,唯一的生存之道应该是采用将一系列技术交织相联并以此为基石,而不是将那些技术分散并逐个建立。为此,智能系统框架(Intelligent Systems Framework,ISF)提供了多种解决方案,包括打造企业商品处理器,对所有装置初始状态的可管理性进行考量,以及确保这类基础设施将在(固定、无线或近场无线电式的)异构网路中运行。然而,该框架最具吸引力的地方还是它嵌入式安全的理念。企业迫切需要嵌入式安全,这并非是危言耸听,2010年Stuxnet病毒对工业控制技术方面的攻击就足以证明。系统此前从不被认为具有安全隐患的原因竟然是人们懒得对它们下手。但是,如果工业控制系统能够得到保护,是否充斥于物联网中的其他独立系统也能如此呢?解决上述问题的办法,就是将软件访问上一层级内容时所需的必要电路进行嵌入式处理,而非使用静态的手段对芯片加以保护。这就使得“可信化平台模组”应运而生。它可以对加密空间提供保护,使之能够储存“认证令牌“一类的数据,或者嵌入特定程序,让恶意软件无法对系统造成直接破坏。与软件服务套件一起嵌入的安全体系将为物联网的发展增添重要可能。同时,英特尔还是许多主动性解决方案的发起者。例如,由英特尔发起的“开放数据中心联盟”就旨在通过一系列大型企业及部分技术服务公司之间的合作,共同制定标准,将ISF的技术方案紧密衔接。规章和承诺数据保护开始慢慢变为国家级的或者超国家级(supra-national)政府或机构的重要功能之一。种种迹象表明,解决这些问题需要耗费本十年剩下的时间,甚至更长,并进而转变为一个全球化的体系。当越来越多的来自对象或“物”的数据在单个用户周围流动,个人隐私将显得愈发重要。这是由大数据引发的问题,也是各类组织在处理大数据时所要面对的。迄今为止,收集到的个人的数据还十分固定,例如姓名、住址以及社保账号等。但这些数据被交易的情况越来越多,因为它们与系统相联,能够推测并识别出何人在何时与何人做何事。不过现在讨论隐私问题可能并没有实际意义。因为大多数上传的数据是分散在不同的数据库间的,它们很快就会被删除。然而在大数据的经济原则“驱动”下,这些数据碎片最终会被整合,因此如何监管私人数据将是政治性的问题。人们常常假设,物联网将由自由市场以充满竞争却亦十分融洽的方式建立,看来它的雏形将通过政府、约定、或协议条款形成。政府也一定会从大数据中捞到好处,的确,最具争议的方面是各国寻求挖掘关于子民生活习惯和生活圈数据的方式。因此,大数据的未来也极具争议。立法规模多大才可能影响商业?欧盟的《数据保护指令》便是一个很好的例子。当下,该指令主要关注了一些十分重要的子议题,以此改进违反数据隐私的通知。这些跨国章程将以类似的限定方式对物联网上收集到的或者泄露的数据加以制约,成为具有实际意义的标准。此外,部分组织也将能知悉,当特殊利益集团或个人想要考验法律的底线时,法院对此的忍耐限度究竟有多大。公司必须准备好应对复杂多变的情况,比如说要允许个人用户以某种方式选择退出,而该方式可能体现的是数据过剩时代的主要挑战。结论总之,尚未有简单的安全解决方案来应对上述问题。组成物联网的所有对象将会含有嵌入式安全系统。人们将使用实时分析处理对象产生的数据,从以自动化的方式对其进行管理。这种管理将是无人干预的,除非某些阈限被攻破。政府将会同时寻求数据接入以及引入“杀毒开关”,这能减少设备因经济或政治利益而受到的潜在攻击。不管企业现在是否涉及这一事实,物联网时代总会以这样或那样的形式来临。忽略物联网会改变组织以及他们所服务的顾客和市民,将是巨大的错误。同样,假设物联网会以互联网曾经的方式发展也是愚蠢的。在崭新的世界,政府、顾客以及市民都将受到积极的影响。 更多


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10701619.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存