“农业物联网”就是物联网技术在农业生产、经营、管理和服务中的具体应用。按照物联网技术架构,农业物联网仍然通过“感知—传输—应用”的途径来实现对农业的应用。“感知”就是运用各类传感器,如温湿度传感器、光照强度传感器、PH值传感器、CO2传感器等设备,实时地采集大田种植、设施园艺、畜禽养殖、水产养殖和农产品运输等环境中的温度、湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数信息;“传输”就是建立数据传输和转换方法,通过局部的无线网络、互联网、移动通信网等各种通信网络交互传递,实现农业生产环境信息的有效传输;“应用”就是将获取的大量农业信息进行融合、处理,使技术人员对多个大棚的环境进行监测控制和智能管理,保证农作物有一个良好的、适宜的生长环境,达到增产、改善品质、调节生长周期、提高经济效益的目的,进而实现农业生产集约、高产、优质、高效、生态和安全的目标。
蔬菜大棚、温室大棚主要用于不适合蔬菜生长的季节,模拟蔬菜生长的自然条件,提供蔬菜适合生长的环境,而这个环境的实现不能凭感觉,需要引入农业物联网温室环境监控技术解决蔬菜生长环境的可控性,达到提高蔬菜生产效益的目的。
一、蔬菜温室大棚控制系统构建:
一个完整的蔬菜温室大棚自动控制系统包括数据采集、数据传输、数据分析和生产 *** 作系统等部分,每个部分在蔬菜生产中具有不同的功能,这些功能组合起来完成蔬菜生产的全过程。
二、蔬菜温室大棚物联网环境自动控制系统主要包括以下几个分系统部分:
1数据采集系统:
数据采集系统由无线传感器、供电电源或者蓄电池等组成;现场的监测元件包括温湿度、CO2浓度、土壤温湿度、土壤养分等监测元件。数据采集系统主要负责温室大棚内部的光照、温度、湿度和土壤含水量以及视频等数据的采集和控制。
2数据传输系统:
数据传输系统由数据采集传感器,包括温度传感器、湿度传感器、光照强度传感器、光合有效辐射传感器、土壤温湿度传感器、CO2传感器、风向传感器等组成。传输方式:外部网络以基于IP网络技术和GPRS通信网络为基础进行传输;内部网络则采用短距离、低功率的ZigBee无线通信技术。基于ZigBee的无线传输模式中,传感器采集的数据通过ZigBee发送模块传送到中心节点上,同时,用户终端和一体化控制器间传送的控制指令也传送到中心节点上,中心节点再经过边缘网关将传感器数据、控制指令发送到上位机的业务平台。技术人员可以通过有线网络/无线网络访问上位机系统业务平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。
3数据分析系统:
数据分析及显示部分包括电脑、软件、无线接收模块、报警系统,依据不同的环境、作物、生长期,实施不同的控制方案。
4实地环境 *** 控系统:
该分系统包括的灌溉控制系统可进行滴浇灌和微喷雾系统的控制,实现远程自动灌溉;土壤环境监测系统则利用土壤水分传感器、土壤湿度传感器等来实时获取土壤水分、湿度等数据,为灌溉控制系统和温湿度控制系统提供环境信息;温湿度监控系统可利用高精度传感器来采集农作物的生长环境信息,设定环境指标参数,当环境指标超出参数范围时,可自动启动风机降温系统、水暖加温系统、空气内循环系统等,以进行环境温湿度的调节。
利用农贸行业物联网建设的蔬菜温室大棚,能为温室大棚种植提供有效的控制蔬菜的生长环境的先进技术,使蔬菜获得适宜的生长环境,增加产量,以实现跨季节的蔬菜培育。
智慧菌菇房解决方案是基于物联网、大数据信息系统技术,通过各种传感设备对空气温湿度、空气中二氧化碳含量、光照强度等数据进行采集,利用以太网、4G、WIFE的网络信号传输采集到的数据到控制中心,控制中心会根据人工经验所设置的各种参数来进行比较,判断实时的数据是否符合预制参数要求,并通过手机APP或电脑端查看菌菇房内实况,并进行远程控制。
福建蜂窝物联网科技有限公司食用菌菇房环境监测系统、食用菌种植智能化管理系统,能够自动监测并调节菌菇房内的二氧化碳含量、温度、湿度,具有二氧化碳排放控制功能、加湿、除湿控制功能和升温、降温控制功能,可以控制风机、加湿器等设备,通过人机界面可以设置二氧化碳、温湿度的上下限以及控制回差,带有通讯接口,可以和计算机、手机通讯,构成菇房环境自动监控系统。
福建蜂窝物联网科技有限公司承建的冠菌农业大棚是福建省省级食用菌种植示范基地得到业界专业人士的认可!据相关人员介绍,该套系统的使用,降低了80%的人工成本,产量提高30%左右,减少水电资源60%,整体经济效益提高40%左右。
半地下,即地面以下挖1一15米,地面以上堆土05一1米,南低北高。薄膜上加盖保温材料。冬季室外零下6度左右时,棚内不低于10度。如室外零下10度,可在棚内设空气加热线,控制棚内不低于10度。造价成本很低智能温室大棚所需的控制系统需要满足第一,要合乎基本上设计方案要求例如,在对其电源电路运作状况做好认识的历程中,要防止出现一些问题的姿势,而在对所有体系的自动检查作用开展突显的历程中,也需要重视程序控制器自身作用的充分发挥与此同时,要对风机 *** 纵前窗 *** 纵、湿幕泵控制、阳光照射控制等各类关键点的策划和设计作业开展高度重视,确保其体系的正常的运作。
第二,要掌握 *** 作系统的真实运作状况通过电源电路自然环境数据信号的变换,对数字信号开展传送,并根据放大仪的高效变大,将一些数字信号传送到程序控制器当中,那样可以根据模拟信号的传送,对其自动化技术的工作中范畴开展扩展。
例如,在对工业设备和系统软件实现应用的历程中,运用传感器感应器,可以将屋内的环境温度标值传送到程序控制器当中,并与额定值开展较为,假如基本一致,则导出正常的命令,假如标值差别比较大则传出异常的命令,并表明其详细的标值差。
第三,融合灯源感应器的主要作用,系统对搜集到的灯源具体内容开展精准定位,并运行"太阳墙",在设置有关数据和标准的历程中,可以认识到绿色植物的详细情况假如灯源斜角小则可以打开太阳墙,而假如灯源已经超过规范的界定值,则严禁打开太阳墙,系统软件可能中止运作,那样可以智能化系统的对其温湿度循环系统状况开展 *** 纵。
当代温室大棚智能化设计自动控制系统实现剖析的历程中,关键是以硬件配置、手机软件及其宏,观等差异的角度下手,对详细的系统开发关键点开展掌握,在这个环节中,为了更好地更好的掌握当代温室大棚智能化设计自动控制系统的运作状况,还需要充足融合绿色植物的实际生长发育自然环境,重视测试流程精确度的掌握,为此能够更好地促进农业现代化的发展趋势
农业物联网工程,主要就是指农业物联网大棚控制系统中,运用物联网系统的温度传感器、湿度传感器、PH值传感器、光传感器、CO2传感器等设备,检测环境中的温度、相对湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数,通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使技术人员在办公室就能对多个大棚的环境进行监测控制。采用无线网络来测量获得作物生长的最佳条件,可以为温室精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益的目的。农产业信息化已经成为当今农业的一个趋势,物联网则承担了很重要的职责,各人认为物联网+大鹏种植系统可体现在一下几个方面。1、大鹏种植中可利用传感检测技术,实时检测大棚内情况,比如含氧量、温度、湿度、光照等等,依照数据进行科学种植,尽量做到增大产能;
2、种植场所视频监控系统,自动灌溉系统,实时监测大鹏内视频情况,减少人力巡查成本;
3、农产品安全溯源,利用条形码、二维码等监管农产品市场流动情况,做到食品安全不隐患,让客户吃上放心农产品,同时打造自身品牌效应
至于价格就要看贵企业想做到哪一步了。
联通物联网行业应用可联系
建造标准
温室大棚应建造在交通便当,地势平整、开阔,排水便当,有蓄水池、河流或地下水丰盛,地势高燥,避风向阳,地下水位05米以下,土壤深沉肥美的地方。
建设温室大棚要注意棚内后两排立柱之间,间隔尽量缩小,应在80厘米左右,中间只建一条东西走向的水泥沟兼人行路就可。东西两棚间隔08-2米,中心有一宽800厘米以上的小水沟。南北两棚间隔3-5米左右,用于挖水沟、安供水管道、修建通行路程等。连栋温室的间距不应低于一栋温室的宽度。
温室大棚
关于大棚选址,土壤是作物获得养分的重要来源,需注意土壤有机质含量,建议在建造温室大棚之前,定期对土壤进行检测,若土壤的有机质含量不够,可提早进行补充。在作物种植地苗床期等种植过程中,土壤环境的清洁也尤为重要。
温室大棚的朝向对温室内的蓄热能力影响很大,对日光温室来讲。以南北向或略偏西南的朝向更好,即南北为大棚长,东西为棚宽,便于积蓄热量。
同时也要考虑下温室类型建设的基础需求,比如玻璃温室一般上基础底部应低于室外地面05米以上,根据气候和土壤情况,基础顶面与室外地面的距离应大于01米,除了特殊要求外,温室基础顶面与室内地面的距离宜大于04米。薄膜大棚的薄膜外压深度等。
智能温室设施
设备采购
主要配件有接头管、压顶簧、压膜槽(卡槽)、压膜簧(卡簧)、护套、压膜卡、斜撑、U型卡、夹箍、固定器、连接片、压膜线、门、卷膜器、卷膜杆、双管卡、管卡、人字卡、防雾薄膜、防虫网等,根据相关规范对进行建造。
智能温室大棚所需的设备则要在传统大棚的基础上,加上空气温湿度传感器、土壤PH值传感器、土壤温湿度传感器、光照度传感器、二氧化碳传感器、电流传感器等感知设备,以及摄像头、智能控制柜、远程控制物联网云平台等部分。
智能温室
通过感知设备的实时监测,获取温室的环境参数,通过无线传输的方式,经智能控制柜上传到云平台,登录到云平台界面,查看每一分钟的数据变化情况,并根据种植作物类型、环境条件等,联动天窗、通风机、水肥机、补光灯、卷膜器等设备,实现示警、灌溉、卷帘、补光、施肥等 *** 作,减少人工劳作。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)