物联网在阿里: 阿里智能开放平台

物联网在阿里: 阿里智能开放平台,第1张

提到阿里巴巴(Alibaba),大家首先会想到淘宝,然后是支付宝,以及现在的阿里云计算,这是目前阿里最具代表性的产品。这两个产品从互联网时代到移动互联网时代,对人们生活的影响越来越大。面对即将到来的物联网时代,阿里当然也不会无动于衷,我们来聊聊阿里在物联网方面的产品策略。

阿里是一家很务实的公司,非常注重落地的能力,所以阿里在物联网方面的产品都是与其主营业务密切相关的。阿里在物联网方面的产品主要是两部分:

阿里智能开放平台,简称阿里智能(openalipluscom)。

阿里云物联网套件,属于阿里云(aliyuncom)的一个产品。

这两个产品背后的一些云端服务组件,可能有一些重叠,但总的来说是面向不同的客户群体,是两种不同的物联网解决方案。

阿里智能概述

阿里智能的目标是助力传统硬件智能化,让原来的传统家电厂商可以迅速利用阿里智能这样一个平台,把自己的产品智能化。这里智能化的含义主要是家电与手机APP以及互联网的云服务器之间的互 *** 作性。

阿里智能的交互示意图

阿里智能,主要面向的用户是家用电器产品的厂商或开发者,比如空调、洗衣机、窗帘、摄像头、空气净化器、照明、温控等。这些家电设备与手机以及云服务器之间通过阿里的私有协议alink互联。

阿里智能解决方案

阿里智能为用户提供的解决方案包括:连网模块、云端服务以及手机APP。

(1)联网模块

阿里智能提供的联网模块主要是WiFi模组。模组固件包括嵌入式OS以及Alink SDK,开发者可以基于Alink SDK构建自己的应用。ALINK SDK中主要封装了云端的一些交互和服务,如升级管理、配置管理等,另外还包含一个应用程序SMARTLED用来验证智能设备数据发送及指令处理。

(2)阿里智能APP

阿里智能APP

阿里智能提供了一个APP,通过这个APP可以控制所有阿里智能支持的设备,为用户提供一致的交互体验,以及设备间联动的 *** 作。

阿里智能APP设备面板使用HTML5技术开发,并通过H5 SDK开放自主开发能力。厂家及开发者可遵循阿里智能APP的设计和开发规范,自行开发APP设备控制界面。

(3)上架服务

产品开发完,一定是要卖的。加速产品开发流程,缩短产品上架周期,才是阿里智能的最终目标。所以阿里智能为用户提供的是从开发到上架的端到端服务。

阿里智能服务流程

阿里智能平台提供从入驻到上架的一站式接入服务,结合阿里电商平台,还提供售中-交易管理和售后-效果跟踪的服务。

总结

过去几年,智能家居和智能硬件产品兴起,很多家电企业都希望自己的产品也能搭上“智能”这趟列车,以体现自己产品的与时俱进,最起码不会让品牌显得落伍。阿里智能就是面向这样一种普遍性需求的。

另一方面,阿里的主营业务是电商。在阿里看来,这些家电厂商同样是一家家天猫店,产品上架才是最终目标。阿里帮助这些厂商更快地实现产品智能化,可以有效促进线上的产品销售,强化了自己对商家的服务。

对于这些观点,你怎么看?

留言说说~

喜欢我就关注我哟!

认知无线网络的频谱感知技术
认知无线电/认知无线网络起源于Joseph Mitola攻读博士期间的研究工作,在其博士论文中,Mitola将认知无线电定义为“the integration of model-based reasoning with software radio technologies”,认为认知无线电是智能计算和无线通信这两个学科交叉融合的产物[1] 。随后,美国的FCC和DARPA分别启动了多项计划,对认知无线电和动态频谱接入问题进行深入研究;欧盟的端到端重配置计划(E2R: End to End Reconfigurability Project)也启动了对认知概念在技术和经济领域等各方面问题的研究。Simon Hakin在2005年发表了关于认知无线电的著名文章“Cognitive radio: brain-empowered wireless communications”[2] ,主要从信号处理和自适应过程的角度对认知无线电技术的框架结构进行了较为完善的分析。此后,许多有名的大学和研究机构也展开了相关技术的研究和实验平台的开发,认知无线电的概念也被扩展为认知无线网络,指利用认知原理来提高各种资源(频谱、功率等)使用效率的无线网络[3] 。在频谱管理部门的带动下,一些标准化组织也先后开展了一系列标准制定工作以推动该技术的发展。目前涉及认知无线电/认知无线网络标准制订的组织和行业联盟主要是美国电气电子工程师学会(IEEE)、国际电信联盟(ITU)和软件无线电论坛(SDR Forum)等。
认知无线网络中,主(授权)用户指那些对某段频谱的使用具有高优先级或合法授权的用户,次级用户是指那些低优先级的用户。次级用户对频谱的使用不得对主用户造成干扰,因此要求其能快速、可靠地感知主用户使用授权频谱的情况。次级用户必须具备认知能力,因而称其为认知用户,在网络结构中则表示为认知节点。认知用户的频谱感知主要包括在某个频段上检测主用户存在与否(主用户信号检测)和估计认知用户对主用户接收机可能造成的附加干扰(干扰温度估计)两个任务[4] 。更进一步的可能要求是频谱感知还应区分主用户信号的种类(空中接口分类)[5] 。目前大部分频谱感知的研究都集中在最重要的主用户信号检测上。
1 频谱感知的基本方法
主用户信号检测的单节点频谱感知基本方法通常分为三类:
第一类为相干检测。如果知道主用户信号的结构特征(如导频、前导或同步消息等),匹配滤波器加门限检测的方法是最优的主用户信号检测方法。相干检测可获得精确的频谱感知结果,但其缺点也很明显,必须知道主用户信号的先验知识,而且当认知无线网络运行在很宽的频段上时,实现许多类型的授权信号的相干检测成本太高,几乎不可实现。
第二类为能量检测。在感兴趣频段上测量某段观测时间内接收信号的总能量,如果能量低于某个设定门限则声明该频段为白空间。与相干检测相比,能量检测需要更长的感知时间以达到同样的感知效果,但低成本、易实现的特性使其受到认知无线网络中频谱感知技术的青睐。
以上基于信号检测技术的两种频谱感知方法,有很好的理论基础[6] ,性能分析已比较完善。
第三类为特征检测[7] 。能量检测的最大缺点是它不能区分接收到的能量是来自主用户信号还是噪声,在低信噪比环境中的频谱感知结果尤其不可靠。在主用户信号的载波频率、调制类型或循环前缀等某些特征已知时,利用信号的期望和自相关函数呈现出来的周期性(循环平稳谱相关特性),可将信号能量与噪声能量区分开来,突破能量检测的瓶颈。文献[8] 还分析实际情况下有限的数据长度对循环谱特征检测的影响。实现复杂度远高于能量检测是制约特征检测在频谱感知中应用的最主要缺点。
此外,2003年底FCC频谱政策工作组提出了干扰温度模型[9] ,意在对无线环境中的干扰源进行量化和管理。干扰温度限提供了特定地理位置在某一感兴趣频段上接收机能够顺利工作的最差环境的特征描述。根据干扰温度模型,认知用户若能确定其对主用户接收机造成的附加干扰量并加以限制,使主用户接收机所受的总干扰(含噪声)不超过干扰温度限,则认知用户可与主用户运行在同一频段上。可以看出,基于主用户信号检测的频谱感知意在避开主用户,而基于干扰温度模型的频谱感知则试图与主用户同时并存于同一个频段,这是两者最大的区别。文献[10] 定义了已知和未知主用户信号参数时干扰温度的理想模型和一般模型,并从通信容量的角度分析了如何来最优地选择认知系统的工作带宽和发送功率。但干扰温度模型存在两个需要解决的难题:其一为在主用户发送信号存在的情况下如何测定其接收机的噪声水平,其二为在主用户接收机位置未知的情况下如何估计认知用户对它可能产生的干扰。降低问题难度的一种可能办法是让主用户系统来辅助认知系统的频谱感知,如文献[11] 中要求主用户接收机在工作过程中持续发送指示信号。另一个需要考虑到的是,认知用户和主用户共存于同一个频段时,认知系统的通信过程中也会受到授权系统的干扰,所以认知系统能获得的通信容量可能非常有限[10] 。
2 协同频谱感知
认知无线网络可通过对多节点感知信息的协同处理来提高频谱感知的效果,这被称为协同(协作、合作)频谱感知。频谱感知性能主要由感知范围、检测时间、检测概率、虚警概率等几个相互关联的指标来衡量,协同频谱感知可利用空间分集增益改善上述指标,解决单节点感知中难以克服的多径深衰落、阴影衰落和隐终端等难题[4] ,同时也可减轻对单个节点感知灵敏度的要求,降低实现成本[12] 。
实现协同频谱感知的方式有两种,即中心式和分布式。
中心式感知:中心单元收集各认知节点的感知信息,负责识别可用频谱,并将频谱可用信息广播给各认知节点或直接控制认知节点的通信参数。文献[13] 中以AP为中心收集、处理各感知节点的硬判决(二进制)结果,通过克服信道衰落效应来提高感知性能,其检测概率和虚警概率的计算在文献[14] 中给出。文献[15] 以主节点(master node)为中心节点合并各感知结果来检测TV信道。文献[16] 则由融合中心(fusion center)根据各认知节点能量检测的结果最终判断主用户在某个频段上的存在与否。
分布式感知:认知节点彼此之间共享感知信息,但独立判断各自的可用频谱。与中心式感知相比,分布式感知的优点是不需要基础结构网络,部署更灵活些。文献[17] 显示一个用户作为另一个用户中继的两用户协同频谱感知可带来35%的捷变增益(所需感知时间减少35%)。文献[18] 进一步将这种分布式感知协议推广到多用户环境中。
无论中心式还是分布式感知,就协同频谱感知的研究内容而言,主要包含以下两个方面:
1)认知节点感知信息的合并处理,即考虑信息融合(fusion)问题。
2)感知信息传递过程的合作,即考虑中继传输问题。

物联网中如何使用大数据
在瞬息万变的世界中,组织很难赶上不断涌现的新概念。但人们需要区分哪些技术和概念是有用的,哪些只是一种炒作。在数据分析领域,正是大数据引发了这个时代的质疑。而如今,当这个概念日益清晰时,一个新的应用浪潮即将到来:人们需要了解在物联网中如何使用大数据。

关于什么是大数据及其可带来的价值的热烈讨论已经开始消退。然而,当专家们开始大量使用大数据和物联网的技术组合时,人们又再一次试图定义物联网与大数据连接的方式。
物联网与大数据的接触点
简而言之,物联网是连接到互联网的设备网络。这些设备具有内置的传感器,可以生成数据并对外发送,从而可以相互通信,并与分析系统进行通信。
即使对物联网设备仍然很陌生,这个概念已经在人们的生活中找到了方向。设想一个智能家庭,它可以通过调节供暖和空调系统的运行模式来调节温度,可以开启和关闭照明系统,可以发出有关漏水或气体泄漏或外人入侵的信号。最重要的是,智能家居可以在没有户主参与的情况下做到这一点。
物联网业务的一个典型例子是机器监控,使用安装在不同机器部件上的多个传感器。这些传感器将有关温度、振动、压力、润滑等读数发送给分析系统,分析系统对其进行处理并识别一些隐藏的模式和相关性。如果系统识别出读数与某种故障模式相匹配,则会向维护团队发送即时警报。
以下将回答物联网如何与大数据相交的棘手问题。当一些技术正在炒作时,物联网可能是其中之一。实际上,物联网数据是大数据的类型之一,这使得大数据技术堆栈在所有阶段处理物联网数据都是一个很好的(但不是唯一的)选项。对于数据摄取,企业可以使用Apache Kafka,因为该技术支持数据流。Apache Hadoop生态系统是数据存储和处理历史数据的理想选择,而Apache Spark则非常适合近实时数据处理。
大数据使用案例中的物联网数据规则
而人们开始了解制造商所提供的用例。同时,也可以在其他行业了解物联网数据,了解物联网大数据用例。
医疗保健:在医疗保健领域,配戴移动应用技术的可穿戴传感器设备可以实现远程健康监测。该方法的工作原理如下:传感器监测特定患者的状态(心跳、体温、血压、呼吸率等),并将这些数据实时传送到云端,然后传送到应用程序。分析系统不断搜索所有患者物联网数据中的隐藏趋势,并试图找出可能引发并发症的模式。如果物联网的大数据分析显示某些令人担忧的症状,系统会立即向患者和医生发送警报。
零售:知名零售商亚马逊公司最近推出了一个新概念 - Amazon Go。这是一家没有收银员的商店,顾客不必排队等待购物。要进入商店只用扫描他们的智能手机即可。事实上,在这里采用的是物联网和大数据分析技术:商店里遍布传感器和摄像头,顾客在商店中购物,摄像头能够区分其中的每一个人,并且跟踪他们放入购物车或返回货架的所有产品。重量传感器提供了一个额外的控制点:他们可以认识到特定的产品已经不在货架。当顾客完成购物时,他们选择的所有产品都显示在真实和虚拟的篮子中,顾客可以离开商店,系统将在稍后收费。
毫无疑问,Amazon Go是一个有远见的概念。然而,零售业表现出更多脚踏实地的想法,例如智能物流技术,可以跟踪和优化路线,并识别每位卡车司机的行为模式。零售商还使用信标激活访问者的应用程序,并在访问者进入商店并通过信标时,推出相关产品优惠和促销活动。访客会因此感到满意,因为他们收到参加促销活动提供的个性化优惠。同时,信标对商店员工也有帮助,因为它们可以识别需要高质量服务的具有价值的客户。
银行业:银行业也从物联网中受益。银行正在努力获取客户全方位的视角,并提供无缝的客户体验。虽然这一切始于智能手机的积极参与,但物联网进一步扩展至可穿戴设备。例如,美国银行与FitPay公司合作进一步推动可穿戴支付技术。通过这种合作,持卡人将能够直接从他们的智能手表和其他可穿戴设备付款。银行将能够识别客户的行为和偏好。
语结
尽管围绕物联网进行了更多的炒作,但它只是大数据源其中之一。毫无疑问,这是一个有价值的领域,而且正在不断发展。如果企业已经实施了一些大数据解决方案,也许已经处理物联网数据,如果企业正计划采用大数据方案,希望以上描述的用例可以激发一些伟大的想法。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10725408.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存