中国发展网7月3日讯 7月2日下午2点半,一场主题为“释放工业物联网的潜力”论坛在2019夏季达沃斯大连举行。《巴伦周刊》高级管理编辑Lauren Rublin现场主持,富士康工业互联网副董事长李杰,密西根大学交大密西根学院荣誉院长及吴贤铭制造科学冠名教授倪军、SCA集团执行董事Bhairavi Jani、SAP执行副总裁兼企业战略主管Deepak Krishnamurthy4位嘉宾一起探讨关于“工业物联网”目前的阶段、挑战及带来的巨大价值。
从左往右依次为《巴伦周刊》高级管理编辑Lauren Rublin,富士康工业互联网副董事长李杰,密西根大学交大密西根学院荣誉院长及吴贤铭制造科学冠名教授倪军、SCA集团执行董事Bhairavi Jani、SAP执行副总裁兼企业战略主管Deepak Krishnamurthy
刘沐琪摄图
工业物联网现今挑战大于发展
现场多名专家都认为,工业物联网目前仍处于早期阶段,信息所有权、数据分享规则制定的相关问题也存在着争议。富士康工业互联网副董事长李杰认为,互联网改变生活工业物联网改变业界。工业物联网本质上就是D2D(DATA TO DECISION),即通过数据做出决策,企业不管是谁先掌握工业物联网并引导转型,谁就有责任和义务进行标准的制定。
密西根大学交大密西根学院荣誉院长及吴贤铭制造科学冠名教授倪军在现场表示非常赞同李杰的观点,同时他也提出,相关学者已经做了大量研究,并早已绘制相关路径图,更多地展示了工业物联网如何改变企业的KPI(关键绩效指标),很多国家的政府也在鼓励这项新的技术,但是从企业的角度和反馈上来讲物联网还处于早期的阶段,特别是数据的分享、安全和所有权问题还处于早期的阶段。
倪军解释,因为物联网类似 社会 互联网,需要人们彼此连接,搜索世界上所有的供应方,而销售方也会有这样的驱动力去搜索。与之不同的是,在工业物联网中,会存在各种潜在的障碍,去阻碍这样的连接和搜索。例如,在工业物联网当中涉及到商业机密,企业通常不愿意和友商共享这些数据。
SCA集团执行董事Bhairavi Jani表示,现今一个产品的问世需要一系列不同的零部件,生产过程中涉及到大量的供应链不仅仅是独立且孤立的,供应链中存在着海量数据对物流企业来说蕴藏着很大的发展机会。工业物联网不仅仅涉及到现代化的生产,并且涉及到整个的产品生产、消费、运输等全产业周期。
SAP执行副总裁兼企业战略主管Deepak Krishnamurthy认为,工业物联网需要有一个通用的语言才能信息共享从而创造价值。目前,工业物联网仍处于通用语言开发的初期。他表示,倪军教授所说的“信息所有权”是一个比较棘手和敏感的问题,同时也是复杂的 社会 性的问题,在国际化的供应链中,如何进行跨国的分享数据也是目前世界工业物联网共同面临的问题,同样也是SAP目前试图解决的问题。
至于数据分享规则制定的规律,富士康工业互联网副董事长李杰认为,富士康一直在引导业界转型,他举例说明,富士康有175万个机床,这些机床在制造环节会产生大量的数据,通过数据改进绩效是不少供应商的愿望。因此这些供应商希望与富士康合作,从而更快实现需求响应。不同的数据来源联系起来就需要保持一个标准,对于规模相对较小的企业,李杰认为这并非意味着小企业毫无作为。事实上,大型供应商会分享给小企业,这些小企业必须有更快的进程,从而更敏捷地填补大企业的空白以及大企业没有认识到的机会。
工业物联网释放更大价值和机会
SAP执行副总裁兼企业战略主管DeepakKrishnamurthy提出工业物联网已经释放出大量的机会和价值,SAP进军更多消费品领域期待创造更多价值、开放更多市场,也将会有更多的合作伙伴。工业产品不再是过去生产制造的模式,工业物联网用到的设备高能效,在生产过程中减少碳的排放。
富士康工业互联网副董事长李杰认为,工业物联网改变业界主要有三点,第一是用前所未有的方式更快生产;第二是运用智能手机就可以实现更大规模更加灵活的远程管理;三是基于事实、证据、数据,通过询证的方式作出判断,从而更加可持续发展。
专家纷纷在现场用实际案例举证工业物联网在未来将释放出怎样的价值和机会。富士康工业互联网副董事长李杰提出“灯塔”项目,该项目跟世界经济论坛合作,给想做工业物联网的公司提供从传统产业模式转化为先进的产业模式的范例,通过垂直客户和供应链的整合,用教训经验推动生态系统的转变。
密西根大学交大密西根学院荣誉院长及吴贤铭制造科学冠名教授倪军举例 汽车 整车厂商和IT之间的合作,通用跟生产机器人的厂家合作,产权转移给最终用户,思科提供安全的网络方案收集机器人数据第三方,预测机器人停工的时间,机器人把空闲几分钟有效利用起来可以节约几百万美元,同时生产机器人的公司可以通过数据了解自己的产品未来需要改进的方面。
SCA集团执行董事Bhairavi Jani讲了两个案例,一是三个做消费产品的客户使用工业物联网,供应链收集客户信息更加敏捷。二是初创企业在使用技术帮助农户根据市场需求来实现生产,带来了经济效益和 社会 效益。
SAP执行副总裁兼企业战略主管Deepak Krishnamurthy带来了SAP和微软有一个开放数据信息服务合作项目,这些消费数据整合在一起,越来越多的企业参与进来,在这个平台可以相互合作可以提出具有共性的价值主张,帮助客户实现更大的价值。
如今,超过250亿台“物体”连接到互联网上,预计到2025年,这个数字将翻一番。工业物联网(IIoT)以一种爆炸式的方式迅速发展。工业物联网(IIoT)设备、标准和通信协议的激增,使得对IIoT的有效管理变得非常具有挑战性。如何定义工业物联网 (IIoT) 平台?
工业物联网平台 是一种工业物联网软件,它使组织能够安全地管理工业物联网生态系统中所有连接的人、系统和对象。
在界定工业物联网平台时,我们应该认识到,物联网已经创造了一个新的整合水平。随着成千上万的工业物联网设备接入网络,企业需要管理比以往更多的端点。然而,这不是一个简单的设备问题,工业物联网实际上是一个由人、系统和对象组成的数字生态系统。这就需要一个工业物联网平台来安全有效地管理生态系统的每一个元素。
工业物联网平台有哪些不同类型?
虽然工业物联网平台研发的初衷是对工业物联网的设备和数据进行管理和控制,但为了适应不同的用例,已经开发了许多不同类型的平台。事实上,工业物联网平台很难分类,反而工业物联网平台供应商正在改进其平台产品,以满足客户需求和特定的业务需求。
工业物联网平台将提供不同的功能组合,包括工业物联网的端点管理和连接、物联网数据的采集、接收和处理、数据的可视化和分析,以及将物联网数据集成到业务流程和工作流中。在比较不同类型的平台时,应根据组织的业务需求和特定的IT基础设施,并将其与工业物联网的解决方案相匹配。
工业物联网平台应该具备哪些特点?
因此,最好的工业物联网平台因组织而异,单个平台功能集无法为每个用例提供足够的解决方案。但是,任何一个工业物联网平台都应该具备以下特点:
安全
安全性是工业物联网平台的核心,它不仅可以保护所有物联网端点免受外部网络攻击,还可以处理来自组织内部的潜在恶意活动。
连接性
每一个工业物联网设备都必须快速、安全地进行配置,并对其生命周期的所有阶段进行管理,包括在设备配置、注册、激活、挂起、未挂起、删除和按需重置时对其进行跟踪和授权。
集成
集成是工业物联网面临的最大挑战之一。工业物联网平台允许物联网设备与不同的企业应用、云服务、移动应用和传统系统无缝、安全地连接和共享信息。
识别
工业物联网平台可以支持最广泛的物联网设备。无论在工业物联网架构中的任何地方,都能自动感知物联网设备的存在,建立安全连接,并能快速建立设备凭据,或在需要时自动分配。
分析
物联网设备大大增加了组织中的数据量。分析工业物联网应该是工业物联网平台最强大的功能之一。它可以对工业物联网数据进行适当的可视化和分析,为改进数据驱动的决策提供实际的见解。
管理多个工业物联网传感器很简单,但如今,企业拥有数十万台工业物联网设备来执行遍及组织内部的众多任务。工业物联网设备有多种形状和尺寸,没有通用的工业物联网标准或连接方式。管理一个工业物联网网络意味着能够监控一系列异构的工业物联网设备。
如今,工业物联网(IIoT)平台为工业物联网在几乎所有行业的快速发展提供了解决方案。工业物联网平台能够将设备和企业应用软件完美融合,使数据在互联的人、系统和对象之间无缝、安全地流动。工业是物联网应用的重要领域。具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信等不断融入到工业生产的各个环节,可大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,将传统工业提升到智能工业的新阶段。物联网在工业领域的主要应用环保监测及能源管理、工业安全生产管理、制造业供应链管理、生产过程工艺优化、中国计算机报制图等等方面。物联网在工业应用领域的应用,构成了“工业物联网”,它是广域的物联网的具体化的实例,也是最容易被世人接受的物联网。工业物联网的核心理念是交叉学科的组合,涉及到信息安全、网络通信、自动化,是跨学科的,其特征为:嵌入式、互通和实时性、经济性和便利性。
工业用传感网络层:即以二维码、RFID、传感器为主,实现对“物”或环境状态的识别以及感知信号的摄入;
传输网络层:即通过现有的互联网、广电网、通信网或者下一代互联网(1Pv6),实现数据的传输和计算,尤其是现在流行的概念:云计算:
应用网络层:即输入输出控制终端,包括电脑、手机等终端等等。
从整体上来看,物联网还处于起步阶段,而工业物联网的真正达到实用化、大规模应用,必须解决如下关键技术问题:
工业用传感器:工业用传感器是一种检测装置,能够测量或感知特定物体的状态和变化,并转化为可传输、可处理、可存储的电子信号或其他形式信息。工业用传感器是实现工业自动检测和自动控制的首要环节。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。可以说,没有众多质优价廉的工业传感器,就没有现代化工业生产体系,更谈不上工业物联网。
工业无线网络技术:工业无线网络是一种由大量随机分布的、具有实时感知和自组织能力的传感器节点组成的网状(Mesh)网络,综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,具有低耗自组、泛在协同、异构互连的特点。工业无线网络技术是继现场总线之后工业控制系统领域的又一热点技术,是降低工业测控系统成本、提高工业测控系统应用范围的革命性技术,也是未来几年工业自动化产品新的增长点,已经引起许多国家学术界和工业界的高度莺视。
工业过程建模:没有模型就不可能实施先进有效的控制,传统的集中式、封闭式的仿真系统结构已不能满足现代工业发展的需要。工业过程建模是系统设计、分析、仿真和先进控制必不可少的基础。
制造是什么
我们先看看制造究竟是一个什么过程。生产制造过程就是把一组原材料转换为产品,比如投入钢板及相关零部件通过生产过程产出一辆汽车。那么生产过程要涉及什么东西呢,我们看看制造业的组织架构
制造业组织结构
如上图,我们先关注中间一部分,也就是生产部分,制造业的核心环节。
计划控制:可以理解为生产的大脑中枢,它决定了生产什么,何时生产,生产多少。同时也调度生产资源(人,设备,物料,技术,能源)合理分配实现资源利用最大化。
采购:根据生产计划,确定何时需要采购什么原材料
制造:包括加工、组装、工装工具等管理
质量保证:对外购零部件、材料以及生产过程中的产品进行质量检验和质量管理等
设计:产品的设计和研发
所以,制造过程是需要以上所有相关部门的密切配合、协调工作的。制造过程是一个多部门参与、协调的过程。任何一个小的环节出现问题,生产都会被迫中断。
智能制造干什么
当前阶段
上面我们说了,制造过程涉及到多个部门的协作,那么当然,智能制造中的智能也要覆盖到所有这些相关部门。
智能实际上更需要靠软件来实现,目前我们离真正的智能还很远。目前我们大多还是在做信息化,信息化,数字化是智能的基础。看看各个环节都需要什么信息化系统吧。
设计:CAD/CAE,PLM等
计划控制:ERP,APS等
采购:ERP
制造:MOM/MES,精益生产,智能设备,工业物联网
质量:MOM/QMS
所以,目前普遍意义上说的做智能制造相关工作,基本是在做上面这些信息化系统。当然也有一些做工业大数据分析的,当然工业大数据的数据来源就是上面我们所说的各种信息化系统
真正的智能制造
看过安筱鹏博士的书,里面提到智能制造的本质是以数据的自动流动化解复杂系统的不确定性,优化制造资源的配置效率。
这句话的意思可以用我们自身来类比一下,我们的大脑很智能吧,他可以感知外界环境的变化来控制我们的身体来做出对应的反应。对应三步,感知、分析、决策
智能制造中的智能就是要打造出一个制造系统的大脑中枢,这个大脑可以感知到整个生产环节的各种因素的变化,并且经过分析计算做出最优的决策。
第一步就是感知,首先要掌握外界的信息。在生产系统中可以理解为通过数据采集来实时掌握生产环节的各个状态,比如原材料库存情况,设备运行情况,人员情况等。目前我们的工业物联网,各个环节的信息化系统都可以理解为数据采集。工业物联网采集的是设备的运行数据,各个业务系统采集的是业务数据。
第二步是数据的流动和数据分析。首先实现各个系统数据的互联互通。比如采购就影响着原材料库存,库存又影响着生产,所以我们要让不同系统中的数据建立联系。之后通过大数据分析或者各种人工智能算法得出某个环节的最优解。
第三步就是决策,通过分析,智能系统可以控制生产环节做出调整。最简单的就是调度,比如发现某一产品原材料库存不足会自动切换另一种产品。发现一台设备有空闲,利用率不够,可以自主分配任务给此设备,提高资源利用率。
此时,整个生产环节,从采购到生产到质量控制到交付。全部由智能系统来调度,仿佛是有一个大脑在控制着各个环节做出相应的动作。
所以,你看。我们目前大部分只是在做第一步,极少一部分在做第二步的工作。至于最终目标的实现还有很远的距离。
这一部分也回答了开头的第二个,第三个问题。正是因为生产环节涉及到机械设备、自动控制、软件分析、生产流程等,所以智能制造就必须是一个交叉学科。
专业及就业
来回答你的第四个问题,大学本科里面的培养方案都是一些基础学科的教育,是让我们对此有基本的理论知识和概念。和实际工作中用到的还是有很大差距的。可以理解为,专业是一个很宽的概念,交给你很多方向的基本概念,但是工作就是从中选择一个方向并深入下去。
所以,即使你要做本专业的工作,也只会是做智能制造体系中的某一个环节。也许是各个信息化系统的实施,也许是工业物联网,也许是数据分析,智能算法等。
你的培养方案中关于软件方面并不算多,我建议你选择一到两门编程语言及一种关系型数据库,达到熟练掌握的地步。
至于深造的话,更多的就偏向于理论研究了,我朋友圈中也有几个硕士,博士在做智能制造方向的理论和算法研究。这个看个人选择了。
至于你题目中提到的和计科,智科对比,我认为没必要,既然选择了这个专业就好好的学习这个专业,目前全世界的制造业都在寻求转型,实现生产力的进一步提高,另外政策层面也是非常给力的。不要过多纠结于选择上。
思想价值决定企业命运的时代已经到来。
在日益全球化和移动互联、人工智能技术日趋普及的趋势下,优势企业之间的最高阶段的竞争,不能局限于硬技术的竞争,而是体现在企业软实力的竞争,亦即思想的竞争。面对今天的市场格局及为未来趋势,你的企业应该有什么样的价值判断,应该有什么样的思想基础,应该发出什么样的声音,这才是关键。
巴黎高科路桥大学秉承法国精英式高等教育体系,针对工业发展需求,将技术、人文与管理相结合,教学内容具有更新快,目的性强的特点,在学术科研上以项目为主线,拥有强大的企业合作背景和资源。学校注重全球发展和国际合作,在四大洲共有67个合作伙伴院校。
ENPC DBA(IM)项目关注学员成长,更关注学员背后企业和行业发展,旨在为学员提供前沿的学术思想,科学的理论支持,同时结合中国当前制造业发展,为学员提供理论与实践之间科学转换的视角、方法和工具。
更多招生简章、项目信息,欢迎私信了解详情~~~~~~
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)